首页 > 技术文章 > 表达式树

pacoson 2015-10-23 11:24 原文

【0】README

0.1)本文旨在总结出表达式树的构建步骤, 其中还涉及到中缀转后缀表达式,以及如何计算 表达式树中的值;
0.2)本文源代码均为原创;
0.3) 其实, 实现一个简单的计算器, 也即求出中缀表达式的值,我们也可以用栈来实现, 参见 http://blog.csdn.net/pacosonswjtu/article/details/49225529 ; 此处给出 表达式树的实现 仅在于加深对表达式树的理解及它的应用;


##**【1】表达式树 的相关概念** **1.1)定义:**表达式树的树叶是 操作数operand,比如常量或变量,而其他节点是操作符 operator; ![这里写图片描述](//img-blog.csdn.net/20151021201547456) **1.2)对上图中的表达式进行遍历(先序+中序+后序)**
  • 先序遍历: + + a * b c * + * d e f g
  • 中序遍历: a + b * c + ( d * c + f ) * g (这里要加上括号, 这也是我们为什么要采用 后缀或逆波兰记法 来表示 用户输入的运算表达式 以计算结果, 一句话,方便可靠)
  • 后序遍历: a b c * + d e * f + g * +
  • Attention)这里,我们没有给出源代码,因为这个先序,后序 or 中序 的源代码和二叉树遍历的源代码相差无几,这里只是了解下 表达式树的概念,并了解下用 树的遍历计算 表达式的值;

【2】如何构造一颗表达式树(表达式树的定义很关键,对于写我们的递归程序而言)

我们给出一种算法将后缀表达式转变为 表达式树:

  • step1)用户输入中缀表达式, 我们首先将其转为后缀表达式;
  • step2)我们将后缀表达式转为 表达式树的形式;
  • step3)我们来计算该表达式树的计算结果是多少?

**2.1 ) download source code: ** https://github.com/pacosonTang/dataStructure-algorithmAnalysis/tree/master/chapter4/p71_compute_expr_tree

这里写图片描述
**2.2 ) source code at a glance: **

2.2.1)expr_tree.c source code :

#include "stack.h"
#include "binary_tree.h"
 
extern void infir_to_postfix();
extern int computeResult(int operand1, int operand2, int operator_);
extern ElementType compute_postfix();
extern Stack operand;
extern int isOperator(char ch);
extern int computeResult(int operand1, int operand2, int operator_);

// building an expr tree for storing postfix expr
BinaryTree postfixToExprTree()
{			
	int value;		
	BinaryTree* treeArray;	
	int size;
	int index;
	ElementType *p;
	int i ;

	size = getTopOfStack(operand) + 1; //get the top of stack, and add 1 to compute size of the stack
	treeArray = (BinaryTree*)malloc(size * sizeof(BinaryTree)); // alloc memory for treeArray
	index = 0; // set the index of treeArray 0 
	
	p = getArray(operand);
	i = 0;
	while(i < getTopOfStack(operand))
	{
		value = *(p+i++);
		if(value == ' ') // if the value equals ' ', continue 
			continue;
		treeArray[index++] = createBinaryTree(value);// for every element need to build tree node
		if(isOperator(value)) // if the value belongs to operator, 
		{	
			index--;						
			insertNode(treeArray[index-1], treeArray[index], 0);			
			insertNode(treeArray[index-2], treeArray[index], 1);
			treeArray[index-2] = treeArray[index];
			index --;
		}		
		// (treeArray+index++) = createBinaryTree(value);// if the value belongs to operand, push the element into the treeArray
	}
	return *treeArray;
}

// preorder the tree
void printPreorder(int depth, BinaryTree root)
{			
	int i;
		
	if(root) {		
		for(i = 0; i < depth; i++)
			printf("    ");		
		printf("%c\n", root->value);
		printPreorder(depth + 1, root->left);											
		printPreorder(depth + 1, root->right); // Attention: there's difference between traversing binary tree and common tree							
	}
	else {
		for(i = 0; i < depth; i++)
			printf("    ");		
		printf("NULL\n");
	}
}
 
// postordering expression tree with operantors and operands to compute the result of these nodes
int postorder_compute_postfix_expr_tree(BinaryTree root)
{	
	int temp1;
	int temp2;

	if(isOperator(root->value)) {						
		temp1 = postorder_compute_postfix_expr_tree(root->left);											
		temp2 = postorder_compute_postfix_expr_tree(root->right); // Attention: there's difference between traversing binary tree and common tree										
		return computeResult(temp1, temp2, root->value);
	}
	else  
		return root->value - 48;	 
}
 

int main()
{		
	BinaryTree bt;

	// 1.convert infix into postfix expr
	printf("\n ====== convert infix into postfix expr ====== \n");
	infir_to_postfix();	// after this func is called over, we get the postfix of the expr
		
	// 2.convert postfix into the expression tree	
	bt = postfixToExprTree();
	printPreorder(1, bt); 

	//3.compute postfix expr stored in the expression tree
	printf("the final result is : %2d \n", postorder_compute_postfix_expr_tree(bt));

	return 0;
}

2.2.2)binary_tree.c source code :

#include "binary_tree.h"

// create a BinaryTree with root node
BinaryTree createBinaryTree(TreeElementType value)
{	
	BinaryTree t;

	t = (BinaryTree)malloc(sizeof(struct BinaryTree));
    if(!t) {
        Error("out of space, from func createBinaryTree");        
        return NULL;
    }    
	t->left = NULL;
	t->right = NULL;	
	t->value = value;
	
	return t;
}

// make the BinaryTree empty 
BinaryTree makeTreeEmpty(BinaryTree t)
{
	if(t){
		makeTreeEmpty(t->left);
		makeTreeEmpty(t->right);		
		free(t);
	}			
	return NULL;
}

//insert a Tree node with value e into left child or right child of the parent
BinaryTree insert(TreeElementType e, BinaryTree parent, int isLeft)
{	
	BinaryTree node;
	
	if(!parent){
		Error("for parent BinaryTree node is empty , you cannot insert one into the parent node, from func insert");        
        return NULL;
	}

	node = (BinaryTree)malloc(sizeof(struct BinaryTree));
	if(!node) {
        Error("out of space, from func insert");        
        return NULL;
    }
	node->value = e;
	node->right = NULL;
	node->left = NULL;// building the node with value e over

	if(isLeft) { // the tree node inserting into left child of the parent 
		if(parent->left) {
			Error("for parent has already had a left child , you cannot insert one into the left child, from func insert");        
			return NULL;	
		}
		parent->left = node;
	}
	else { // the tree node inserting into right child of the parent 
		if(parent->right) {
			Error("for parent has already had a right child , you cannot insert one into the right child, from func insert");        
			return NULL;	
		}
		parent->right = node;
	}	 
	return node;	
}

//insert a Tree node into left child or right child of the parent
BinaryTree insertNode(BinaryTree node, BinaryTree parent, int isLeft)
{			
	if(!parent){
		Error("for parent BinaryTree node is empty , you cannot insert one into the parent node, from func insert");        
        return NULL;
	}
	
	if(!node) {
        Error("for the node inserted is NULL , so you cannot insert a NULL node, from func insert");        
        return NULL;
    }	 

	if(isLeft)  // the tree node inserting into left child of the parent 		
		parent->left = node;	 
	else  // the tree node inserting into right child of the parent 		
		parent->right = node;		 

	return node;	
}

// find the BinaryTree root node with value equaling to e
BinaryTree find(TreeElementType e, BinaryTree root)
{
	BinaryTree temp;

	if(root == NULL)
		return NULL;
	if(root->value == e)
		return root;

	temp = find(e, root->left);	
	if(temp) 
		return temp;
	else
		return 	find(e, root->right);				
}

// analog print directories and files name in the BinaryTree, which involves postorder traversal. 
void printPostorder(int depth, BinaryTree root)
{			
	int i;
		
	if(root) {						
		printPostorder(depth + 1, root->left);											
		printPostorder(depth + 1, root->right); // Attention: there's difference between traversing binary tree and common tree
		for(i = 0; i < depth; i++)
			printf("    ");		
		printf("%c\n", root->value);					
	}
	else {
		for(i = 0; i < depth; i++)
			printf("    ");		
		printf("NULL\n");
	}
}

2.2.3)stack.h source code :

#include <stdio.h>
#include <malloc.h>

#define ElementType int
#define EmptyStack -1
#define Error(str) printf("%s",str) 
#define FatalError(str) printf("%s",str) 
#define minStackSize 5

struct Stack;
typedef struct Stack *Stack;

int isFull(Stack s);
int isEmpty(Stack s);
Stack createStack(int);
void disposeStack(Stack s);
void makeEmpty(Stack s);
void push(ElementType e, Stack s);
ElementType top(Stack s);
void pop(Stack s);
ElementType top(Stack s);
int getTopOfStack(Stack s);
ElementType *getArray(Stack s);

void printStack(Stack s); 
void printStack_postfix(Stack s);

struct Stack {
	int capacity;
	int topOfStack;
	ElementType *array;
} ;

2.2.4)binary_tree.h source code :

#include <stdio.h>
#include <malloc.h>

#define TreeElementType char
#define Error(str) printf("%s",str) 

struct BinaryTree;
typedef struct BinaryTree *BinaryTree;

BinaryTree createBinaryTree(TreeElementType); // this func is different from that in p70_preorder_binary_tree.c
BinaryTree makeTreeEmpty(BinaryTree);
BinaryTree insert(TreeElementType, BinaryTree, int);
BinaryTree insertNode(BinaryTree, BinaryTree, int);
BinaryTree find(TreeElementType, BinaryTree);
void printPostorder(int depth, BinaryTree root);

// we adopt child-sibling notation
struct BinaryTree
{
	TreeElementType value;
	BinaryTree left;
	BinaryTree right;
};

2.2.5)stack.c source code :

#include "stack.h"

int getTopOfStack(Stack s)
{
	return s->topOfStack;
}

//return stack's array
ElementType *getArray(Stack s)
{
	return s->array;
}

//judge whether the stack is empty or not
int isFull(Stack s)
{
	return s->capacity - 1 == s->topOfStack ? 1 : 0;	
}

//judge whether the stack is empty or not
int isEmpty(Stack s)
{
	return s->topOfStack == -1;
}

//create stack with the head node 
Stack createStack(int size)
{
	Stack s;
	
	s = (Stack)malloc(sizeof(struct Stack));

	if(size < minStackSize) {
		Error("stack size is too small, and creating stack with defualt size 5");	
		size = minStackSize;
	}
	if(s == NULL) {
		FatalError("out of space when allocting memory for stack s");
		return NULL;
	}

	s->array = (ElementType *)malloc(size * sizeof(ElementType));	
	if(s->array == NULL) {
		FatalError("out of space when allocting memory for stack's array ");
		return NULL;
	}
	s->topOfStack = -1;
	s->capacity = size;	
	return s;
}

//dispose stack 
void disposeStack(Stack s)
{
	free(s->array);
	free(s);
}

//pop all elements in the stack
void makeEmpty(Stack s)
{
	if(s->topOfStack == -1)
		Error("must create the stack first");
	while(!isEmpty(s))
		pop(s);
}

//push the node with value e into the stack s 
//attend that first moving ptr ,then executing push operation
void push(ElementType e, Stack s)
{
	ElementType *temp = s->array;
	
	if(isFull(s))
		Error("the Stack is full, push failure! ");			
	else{
		s->topOfStack ++;
		s->array[s->topOfStack] = e;				
	}		
}

// pop the node or element on the top of stack 
//attend that first executing pop operation,then moving ptr
void pop(Stack s)
{
		
	if(isEmpty(s))
		Error("empty stack");
	else 
		s->topOfStack --;							 
}

// return the value of the top node in the stack
ElementType top(Stack s)
{
	if(!isEmpty(s))		
		return s->array[s->topOfStack];
	Error("the stack is empty from func top\n");
	return -1;
}

//print value of element in the stack s
void printStack(Stack s)
{
    int i;

    if(isEmpty(s)){
		Error("empty stack");
		return ;
    }
	
	for(i=0; i<= s->topOfStack; i++) 
		printf("%4d", s->array[i]);
	    
    printf("\n");
}

//print value of element in the stack s with postfix
void printStack_postfix(Stack s)
{
    int i;

    if(isEmpty(s)){
		Error("empty stack");
		return ;
    }
	printf("stack elements list: ");
	for(i=0; i<= s->topOfStack; i++)  	
		printf("%c", s->array[i]);
	
    printf("\n");
}

2.2.6)compute_postfix.c source code :

#include "stack.h"

#define Size 100

// refer to p50.c and put it into the same project
extern struct Stack;
typedef struct Stack *Stack;

extern Stack operand; // operand is an extern variable defined in infixToPostfix 
extern int isOperator(char ch);
extern void infir_to_postfix();
int computeResult(int operand1, int operand2, int operator_);

int computeResult(int operand1, int operand2, int operator_)
{
	switch(operator_)
	{
	case '+': return operand1 + operand2;
	case '*': return operand1 * operand2;
	default: return 0; break;
	}
}

// compute final result of responding postfix 
ElementType compute_postfix()
{
	Stack output;
	int i;
	ElementType *p;
	int value;
	int operand1;
	int operand2;
	 
	output = createStack(Size); // create stack with length Size
	i = 0;
	p = getArray(operand); // get operand->array

	while(i < getTopOfStack(operand))
	{
		value = *(p+i++);
		if(value == ' ')
			continue;
		if(isOperator(value))
		{
			operand1 = top(output);
			pop(output);

			operand2 = top(output);
			pop(output);

			value = computeResult(operand1, operand2, value);
			push(value, output);
			continue;
		}
		push(value - 48, output);
	}
	return getArray(output)[0];
}

2.2.7)infixToPostfix.c source code :

#include "stack.h"

#define Size 100

// refer to p50.c and put it into the same project
extern struct Stack;
typedef struct Stack *Stack;
Stack operand; // declaration of Stack operand 
int isOperator(char ch);
void infir_to_postfix();

//compare operator's priority between ch1 and ch2, return -1, 0 or 1 
int priorityBigger(char ch1, char ch2)
{
	int size = 8;
	char operator_[]={ '(', ')', ' ', '+', '-', ' ', '*', '/'};
	int index1, index2;
	int i;

	if(ch1 - ch2 == 0)
		return 0;

	for(i = 0; i< size; i++)
		if(operator_[i] == ch1)
		 	index1 = i;			 
		else if(operator_[i] == ch2)
		 	index2 = i;					 
	
	index1 -= index2;

	if(index1 == 1 || index1 == -1) 
		return 0;
	else if(index1 > 1)
		return 1;
	else if(index1 < -1)
		return -1;	
}


//judge whether the ch is operator or not ,also 1 or 0
int isOperator(char ch)
{
	int size;
	char operator_[]={'(', '+', '-', '*', '/', ')'};
	int i;

	size = 6;
	for(i = 0; i < size; i++)
		if(ch == operator_[i])
			break;

	return i == size ? 0 : 1;
}

//convert a part of str with length len into responding element value 
ElementType strToElement(int *str, int len)
{
	int i;
	int value;

	i = value = 0;
	while(i < len)
	{
		value += *(str+i) - 48;
		if(++i == len)
			break;
		value *= 10;
	}
	return value;
}

// convert infix expr into postfix expr
//for operand and operator cannot be in the same type ,we treat them as char and split them with space
void infixToPostfix(Stack s1, Stack s2,char *expr)
{
	char ch;	
	int i;
	char top_t;	
	int flag;		

	i = 0;	
	flag = 0;	 
	while((ch = *(expr+i++)) != '\0') 
	{				
		if(ch == ')'){// if ch equals ')', pop elements in stack s2 between '(' and ')' into stack s1
			while((top_t = top(s2)) != '(' ) 
			{			
				push(top_t, s1);
				push(' ', s1);
				pop(s2);
			}			
			pop(s2); // pop '(' in stack s2 			
			continue;
		}

		if(isOperator(ch)) // isOperator is true					
		{ 
			if(ch == '(') 
			{
				push(ch, s2); // push '(' into operator stack s2
				flag = 1;
				continue;
			}			

			while((top_t = top(s2)) != -1 && priorityBigger(top_t, ch) >= 0 && flag ==0) 
			{							
				pop(s2);				 
				push(top_t, s1);
				push(' ', s1);	
			}												 
			push(ch, s2); // push operator into operator stack s2 		 
			flag = 0;
		}
		else 
		{
			push(ch, s1);					 
			push(' ', s1);    // we treat them as char and split them with space
		}
			
	}
	// pop element in s2 and push it into s1
	while(!isEmpty(s2)) 
	{		
		push(top(s2), s1);
		push(' ', s1);
		pop(s2);
	}	
}

// read expr from console till '\n' and we just only focus on '+' and '*';
// postfix expression like 6 5 2 3 + 8 * + 3 + *
char *read()
{
	char *temp;
	int len;		
	char ch;
			
	temp = (char*)malloc(Size * sizeof(char));
	len = 0;			
	while((ch = getchar()) != '\n') 
	{	
		if(ch == ' ')
			continue;
		temp[len++] = ch;	 
	}
		
	temp[len] = '\0';
	
	return temp;
}  

// there are 2 stacks, that's operand and operator;
//works list
//1.read expr, 2.convert the expr from infix to postfix, 3.

/*
int main()
{	
	Stack operand;
	Stack operator_;
	operand = createStack(Size);
	operator_ = createStack(Size);
	
	// convert infix into postfix expr
	infixToPostfix(operand, operator_, read());	
	printStack_postfix(operand);
	
	// compute postfix expr
	
	return 0;
}
*/

void infir_to_postfix()
{	
	Stack operator_;

	//create stack operand and operator_
	operand = createStack(Size);
	operator_ = createStack(Size);
	
	// convert infix into postfix expr
	infixToPostfix(operand, operator_, read());	
	printStack_postfix(operand);	
}

推荐阅读