首页 > 技术文章 > 最优化--深度学习

jiaowolidashao 2020-07-06 21:40 原文

查了一些资料,侵删。
https://www.cnblogs.com/lliuye/p/9451903.html
https://www.cnblogs.com/guoyaohua/p/8542554.html
假如我们要优化一个函数 [公式] ,即找到它的最小值, 常用的方法叫做Gradient Descent (GD), 也就是最速下降法.

一、从最简单的梯度下降的概念讲

  (1)批梯度下降(Batch Gradient Descent,BGD)
  单个样本的误差:
  
  所有样本的误差的和,来表示模型的误差E:
  
  由此可见,模型的训练,实际上就是求取到合适的w,使E(w)取得最小值。这在数学上称作优化问题,而E(w)就是我们优化的目标,称之为目标函数。

  梯度是一个向量,它指向函数值上升最快的方向。显然,梯度的反方向当然就是函数值下降最快的方向了。
  梯度下降算法的公式:
  
  经过推导,

  
  (改成-号)
  我们简写一下即如下式:BGD(批量梯度下降,这里的批量实际上是全部数据)每次迭代采用整个训练集数据来计算损失函数J(θ)对参数θ的的梯度。每次迭代的参数更新公式为:
  

   由此,我们的上式就完成了批梯度下降(Batch Gradient Descent)
  优点:由于每一步迭代使用了全部样本,因此当损失函数收敛过程比较稳定。对于凸函数可以收敛到全局最小值,对于非凸函数可以收敛到局部最小值。
  (1)一次迭代是对所有样本进行计算,此时利用矩阵进行操作,实现了并行。
  (2)由全数据集确定的方向能够更好地代表样本总体,从而更准确地朝向极值所在的方向。当目标函数为凸函数时,BGD一定能够得到全局最优。 
  缺点:每一步更新中,都要利用全部样本计算梯度,计算起来非常慢,遇到很大量的数据集也会非常棘手,而且不能投入新数据实时更新模型。另外,如果我们不小心陷入了鞍点, 或者比较差的局部最优点, GD算法就跑不出来了, 因为这些点的导数是0. 
  什么是鞍点?
  

 

   什么是局部最优点?
  

   (2)随机梯度下降算法(Stochastic Gradient Descent, SGD)

   如果我们的样本非常大,比如数百万到数亿,那么计算量异常巨大。因此,实用的算法是SGD算法。在SGD算法中,每次更新w的迭代,只计算一个样本。这样对于一个具有数百万样本的训练数据,完成一次遍历就会对w更新数百万次,效率大大提升。由于样本的噪音和随机性,每次更新w并不一定按照减少E的方向。然而,虽然存在一定随机性,大量的更新总体上沿着减少E的方向前进的,因此最后也能收敛到最小值附近。
  基于BGD中的两个缺点,提出了SGD算法,普通的BGD算法是每次迭代把所有样本都过一遍,每训练一组样本就把梯度更新一次。而SGD算法是从样本中随机抽出一组,训练后按梯度更新一次,然后再抽取一组,再更新一次,在样本量及其大的情况下,可能不用训练完所有的样本就可以获得一个损失值在可接受范围之内的模型了。
  

  优点:
  (1)由于不是在全部训练数据上的损失函数,而是在每轮迭代中,随机优化某一条训练数据上的损失函数,这样每一轮参数的更新速度大大加快。
  缺点:
  (1)准确度下降。由于即使在目标函数为强凸函数的情况下,SGD仍旧无法做到线性收敛。
  (2)可能会收敛到局部最优,由于单个样本并不能代表全体样本的趋势。
  (3)不易于并行实现
  缺点:SGD相对来说要快很多,但是也有存在问题,由于单个样本的训练可能会带来很多噪声,SGD的噪音较BGD要多,使得SGD并不是每次迭代都向着整体最优化方向。所以虽然训练速度快,但是准确度下降,并不是全局最优。虽然包含一定的随机性,但是从期望上来看,它是等于正确的导数的。

  解释一下为什么SGD收敛速度比BGD要快:
  答:这里我们假设有30W个样本,对于BGD而言,每次迭代需要计算30W个样本才能对参数进行一次更新,需要求得最小值可能需要多次迭代(假设这里是10);而对于SGD,每次更新参数只需要一个样本,因此若使用这30W个样本进行参数更新,则参数会被更新(迭代)30W次,而这期间,SGD就能保证能够收敛到一个合适的最小值上了。也就是说,在收敛时,BGD计算了 10×30W 次,而SGD只计算了1×30W 次。

  (3)小批量梯度下降法Mini-Batch Gradient Descent (MBGD)

  在此基础上又提出了小批量梯度下降法,它是每次从样本中随机抽取一小批进行训练,而不是一组。即 n 个样本进行计算,这样它可以降低参数更新时的方差,收敛更稳定,另一方面可以充分地利用深度学习库中高度优化的矩阵操作来进行更有效的梯度计算。
  
  和 SGD 的区别是每一次循环不是作用于每个样本,而是具有 n 个样本的批次。
  优点:
  (1)通过矩阵运算,每次在一个batch上优化神经网络参数并不会比单个数据慢太多。
  (2)每次使用一个batch可以大大减小收敛所需要的迭代次数,同时可以使收敛到的结果更加接近梯度下降的效果。(比如上例中的30W,设置batch_size=100时,需要迭代3000次,远小于SGD的30W次)
  (3)可实现并行化。
  缺点:
  (1)batch_size的不当选择可能会带来一些问题。
  batcha_size的选择带来的影响:
  (1)在合理地范围内,增大batch_size的好处:
    a. 内存利用率提高了,大矩阵乘法的并行化效率提高。
    b. 跑完一次 epoch(全数据集)所需的迭代次数减少,对于相同数据量的处理速度进一步加快。
    c. 在一定范围内,一般来说 Batch_Size 越大,其确定的下降方向越准,引起训练震荡越小。
  (2)盲目增大batch_size的坏处:
    a. 内存利用率提高了,但是内存容量可能撑不住了。
    b. 跑完一次 epoch(全数据集)所需的迭代次数减少,要想达到相同的精度,其所花费的时间大大增加了,从而对参数的修正也就显得更加缓慢。
    c. Batch_Size 增大到一定程度,其确定的下降方向已经基本不再变化。

 

推荐阅读