首页 > 技术文章 > 代码中的软件工程

chx-guo 2020-11-09 21:12 原文

参考资料:https://gitee.com/mengning997/se/blob/master/README.md#代码中的软件工程
项目案例:https://github.com/mengning/menu

一、c/c++编译调试环境配置

安装c/c++插件

在vscode中extensions中搜索c/c++点击安装:

安装MinGW

下载Install Mingw-w64/GCC and GDB

由于我之前下载过dev,里面集成了MinGW64,故这步略过

确定自己的gcc还能正常工作

配置json

点击运行后,将生成.vscode文件夹,里面有launch.json和tasks.json

将创建一个task.json文件来告诉VS Code如何构建(编译)程序。 该任务将调用gcc编译器以基于源代码创建可执行文件。

里面的代码

{
    "tasks": [
        {
            "type": "cppbuild",
            "label": "C/C++: gcc.exe build active file",
            "command": "D:\\Dev-Cpp\\MinGW64\\bin\\gcc.exe",
            "args": [
                "-g",
                "${file}",
                "-o",
                "${fileDirname}\\${fileBasenameNoExtension}.exe"
            ],
            "options": {
                "cwd": "D:\\Dev-Cpp\\MinGW64\\bin"
            },
            "problemMatcher": [
                "$gcc"
            ],
            "group": {
                "kind": "build",
                "isDefault": true
            },
            "detail": "Generated task by Debugger"
        }
    ],
    "version": "2.0.0"
}

编译运行

直接编译hello.c 得到hello.exe,运行hello.exe可以显示结果

二、代码风格和代码规范

代码风格

  1. 一是规范整洁。遵守常规语言规范,合理使用空格、空行、缩进、注释等;

  2. 二是逻辑清晰。没有代码冗余、重复,让人清晰明了的命名规则。做到逻辑清晰不仅要求程序员的编程能力,更重要的是提高设计能力,选用合适的设计模式、软件架构风格可以有效改善代码的逻辑结构,会让代码简洁清晰;

  3. 三是优雅。优雅的代码是设计的艺术,是编码的艺术,是编程的最高追求。

  4. 一般来讲,我们对代码风格的基本原则要求是简明、易读、无二义性。

程序块的头部注释

  1. 注释和版权信息:注释也要使用英文,不要使用中文或特殊字符,要保持源代码是ASCII字符格式文件;

  2. 不要解释程序是如何工作的,要解释程序做什么,为什么这么做,以及特别需要注意的地方;

  3. 每个源文件头部应该有版权、作者、版本、描述等相关信息。

程序中的头部注释

三、模块化设计

模块化的基本原理

  1. 模块化软件设计的方法如果应用的比较好,最终每一个软件模块都将只有一个单一的功能目标,并相对独立于其他软件模块,使得每一个软件模块都容易理解容易开发。

  2. 从而整个软件系统也更容易定位软件缺陷bug,因为每一个软件缺陷bug都局限在很少的一两个软件模块内。

  3. 而且整个系统的变更和维护也更容易,因为一个软件模块内的变更只影响很少的几个软件模块。

  4. 因此,软件设计中的模块化程度便成为了软件设计有多好的一个重要指标,一般我们使用耦合度(Coupling)和内聚度(Cohesion)来衡量软件模块化的程度。

在程序中的体现

将数据结构和它的操作与菜单业务处理进行分离处理,尽管还是在同一个源代码文件中,但是已经在逻辑上做了切分,可以认为有了初步的模块化。

在menu.c文件中,导入了两个本地包,menu.h和linktable.h 。这两个文件就将数据结构和操作与菜单业务进行了分离。

#include "linktable.h"
#include "menu.h"

KISS(Keep It Simple & Stupid)原则

  1. 一行代码只做一件事

  2. 一个块代码只做一件事

  3. 一个函数只做一件事

  4. 一个软件模块只做一件事

四、可重用软件设计

接口的基本概念

•接口就是互相联系的双方共同遵守的一种协议规范,在我们软件系统内部一般的接口方式是通过定义一组API函数来约定软件模块之间的沟通方式。换句话说,接口具体定义了软件模块对系统的其他部分提供了怎样的服务,以及系统的其他部分如何访问所提供的服务。

•在面向过程的编程中,接口一般定义了数据结构及操作这些数据结构的函数;而在面向对象的编程中,接口是对象对外开放(public)的一组属性和方法的集合。函数或方法具体包括名称、参数和返回值等。

接口的五要素

•接口的目的;

•接口使用前所需要满足的条件,一般称为前置条件或假定条件;

•使用接口的双方遵守的协议规范;

•接口使用之后的效果,一般称为后置条件;

•接口所隐含的质量属性。

在程序中体现

在linktable.h中所有的方法只定义方法名,参数和返回值而没有具体的函数体,而具体的函数体则放在linktable.c文件中,在linktable.h中定义的就是接口。

#ifndef _LINK_TABLE_H_
#define _LINK_TABLE_H_

#include <pthread.h>

#define SUCCESS 0
#define FAILURE (-1)

/*
 * LinkTable Node Type
 */
typedef struct LinkTableNode
{
    struct LinkTableNode * pNext;
}tLinkTableNode;

/*
 * LinkTable Type
 */
typedef struct LinkTable tLinkTable;

/*
 * Create a LinkTable
 */
tLinkTable * CreateLinkTable();
/*
 * Delete a LinkTable
 */
int DeleteLinkTable(tLinkTable *pLinkTable);
/*
 * Add a LinkTableNode to LinkTable
 */
int AddLinkTableNode(tLinkTable *pLinkTable,tLinkTableNode * pNode);
/*
 * Delete a LinkTableNode from LinkTable
 */
int DelLinkTableNode(tLinkTable *pLinkTable,tLinkTableNode * pNode);
/*
 * Search a LinkTableNode from LinkTable
 * int Conditon(tLinkTableNode * pNode,void * args);
 */
tLinkTableNode * SearchLinkTableNode(tLinkTable *pLinkTable, int Conditon(tLinkTableNode * pNode, void * args), void * args);
/*
 * get LinkTableHead
 */
tLinkTableNode * GetLinkTableHead(tLinkTable *pLinkTable);
/*
 * get next LinkTableNode
 */
tLinkTableNode * GetNextLinkTableNode(tLinkTable *pLinkTable,tLinkTableNode * pNode);

#endif /* _LINK_TABLE_H_ */

接口和耦合度的关系

•对于软件模块之间的耦合度,前文中提到,耦合度是指软件模块之间的依赖程度,一般可以分为紧密耦合(Tightly Coupled)、松散耦合(Loosely Coupled)和无耦合(Uncoupled)。一般在软件设计中我们追求松散耦合。

•更细致地对耦合度进一步划分的话,耦合度依次递增可以分为无耦合、数据耦合、标记耦合、控制耦合、公共耦合和内容耦合。这些耦合度划分的依据就是接口的定义方式,我们接下来重点分析一下公共耦合、数据耦合和标记耦合。

•公共耦合

•当软件模块之间共享数据区或变量名的软件模块之间即是公共耦合,显然两个软件模块之间的接口定义不是通过显式的调用方式,而是隐式的共享了共享了数据区或变量名。

•数据耦合

•在软件模块之间仅通过显式的调用传递基本数据类型即为数据耦合。

•标记耦合

•在软件模块之间仅通过显式的调用传递复杂的数据结构(结构化数据)即为标记耦合,这时数据的结构成为调用双方软件模块隐含的规格约定,因此耦合度要比数据耦合高。但相比公共耦合没有经过显式的调用传递数据的方式耦合度要低。

线程安全

线程安全的基本概念

•如果你的代码所在的进程中有多个线程在同时运行,而这些线程可能会同时运行这段代码。如果每次运行结果和单线程运行的结果是一样的,而且其他的变量的值也和预期的是一样的,就是线程安全的。

• 线程安全问题都是由全局变量及静态变量引起的。若每个线程中对全局变量、静态变量只有读操作,而无写操作,一般来说,这个全局变量是线程安全的;若有多个线程同时执行读写操作,一般都需要考虑线程同步,否则就可能影响线程安全。

函数的可重入性和线程安全的关系

•可重入的函数不一定是线程安全的,可能是线程安全的也可能不是线程安全的;可重入的函数在多个线程中并发使用时是线程安全的,但不同的可重入函数(共享全局变量及静态变量)在多个线程中并发使用时会有线程安全问题;

• 不可重入的函数一定不是线程安全的。

在程序中的应用

可以看到在linktable.c 文件中,将所有可能公共操作的数据都加了锁,这样就保证了每个函数都是可重入的。

每个临界区也是加了锁,保证每次只能进入一个进程进入临界区。


/********************************************************************/
/* Copyright (C) SSE-USTC, 2012-2013                                */
/*                                                                  */
/*  FILE NAME             :  linktabe.c                             */
/*  PRINCIPAL AUTHOR      :  Mengning                               */
/*  SUBSYSTEM NAME        :  LinkTable                              */
/*  MODULE NAME           :  LinkTable                              */
/*  LANGUAGE              :  C                                      */
/*  TARGET ENVIRONMENT    :  ANY                                    */
/*  DATE OF FIRST RELEASE :  2012/12/30                             */
/*  DESCRIPTION           :  interface of Link Table                */
/********************************************************************/

/*
 * Revision log:
 *
 * Created by Mengning,2012/12/30
 * Provide right Callback interface by Mengning,2012/09/17
 *
 */

#include<stdio.h>
#include<stdlib.h>
#include <pthread.h>
#include"linktable.h"

/*
 * LinkTable Type
 */
struct LinkTable
{
    tLinkTableNode *pHead;
    tLinkTableNode *pTail;
    int			SumOfNode;
    pthread_mutex_t mutex;

};


/*
 * Create a LinkTable
 */
tLinkTable * CreateLinkTable()
{
    tLinkTable * pLinkTable = (tLinkTable *)malloc(sizeof(tLinkTable));
    if(pLinkTable == NULL)
    {
        return NULL;
    }
    pLinkTable->pHead = NULL;
    pLinkTable->pTail = NULL;
    pLinkTable->SumOfNode = 0;
    pthread_mutex_init(&(pLinkTable->mutex), NULL);
    return pLinkTable;
}

/*
 * Delete a LinkTable
 */
int DeleteLinkTable(tLinkTable *pLinkTable)
{
    if(pLinkTable == NULL)
    {
        return FAILURE;
    }
    while(pLinkTable->pHead != NULL)
    {
        tLinkTableNode * p = pLinkTable->pHead;
        pthread_mutex_lock(&(pLinkTable->mutex));
        pLinkTable->pHead = pLinkTable->pHead->pNext;
        pLinkTable->SumOfNode -= 1 ;
        pthread_mutex_unlock(&(pLinkTable->mutex));
        free(p);
    }
    pLinkTable->pHead = NULL;
    pLinkTable->pTail = NULL;
    pLinkTable->SumOfNode = 0;
    pthread_mutex_destroy(&(pLinkTable->mutex));
    free(pLinkTable);
    return SUCCESS;		
}

/*
 * Add a LinkTableNode to LinkTable
 */
int AddLinkTableNode(tLinkTable *pLinkTable,tLinkTableNode * pNode)
{
    if(pLinkTable == NULL || pNode == NULL)
    {
        return FAILURE;
    }
    pNode->pNext = NULL;
    pthread_mutex_lock(&(pLinkTable->mutex));
    if(pLinkTable->pHead == NULL)
    {
        pLinkTable->pHead = pNode;
    }
    if(pLinkTable->pTail == NULL)
    {
        pLinkTable->pTail = pNode;
    }
    else
    {
        pLinkTable->pTail->pNext = pNode;
        pLinkTable->pTail = pNode;
    }
    pLinkTable->SumOfNode += 1 ;
    pthread_mutex_unlock(&(pLinkTable->mutex));
    return SUCCESS;		
}

/*
 * Delete a LinkTableNode from LinkTable
 */
int DelLinkTableNode(tLinkTable *pLinkTable,tLinkTableNode * pNode)
{
    if(pLinkTable == NULL || pNode == NULL)
    {
        return FAILURE;
    }
    pthread_mutex_lock(&(pLinkTable->mutex));
    if(pLinkTable->pHead == pNode)
    {
        pLinkTable->pHead = pLinkTable->pHead->pNext;
        pLinkTable->SumOfNode -= 1 ;
        if(pLinkTable->SumOfNode == 0)
        {
            pLinkTable->pTail = NULL;	
        }
        pthread_mutex_unlock(&(pLinkTable->mutex));
        return SUCCESS;
    }
    tLinkTableNode * pTempNode = pLinkTable->pHead;
    while(pTempNode != NULL)
    {    
        if(pTempNode->pNext == pNode)
        {
            pTempNode->pNext = pTempNode->pNext->pNext;
            pLinkTable->SumOfNode -= 1 ;
            if(pLinkTable->SumOfNode == 0)
            {
                pLinkTable->pTail = NULL;	
            }
            pthread_mutex_unlock(&(pLinkTable->mutex));
            return SUCCESS;				    
        }
        pTempNode = pTempNode->pNext;
    }
    pthread_mutex_unlock(&(pLinkTable->mutex));
    return FAILURE;		
}

/*
 * Search a LinkTableNode from LinkTable
 * int Conditon(tLinkTableNode * pNode);
 */
tLinkTableNode * SearchLinkTableNode(tLinkTable *pLinkTable, int Conditon(tLinkTableNode * pNode, void * args), void * args)
{
    if(pLinkTable == NULL || Conditon == NULL)
    {
        return NULL;
    }
    tLinkTableNode * pNode = pLinkTable->pHead;
    while(pNode != NULL)
    {    
        if(Conditon(pNode,args) == SUCCESS)
        {
            return pNode;				    
        }
        pNode = pNode->pNext;
    }
    return NULL;
}

/*
 * get LinkTableHead
 */
tLinkTableNode * GetLinkTableHead(tLinkTable *pLinkTable)
{
    if(pLinkTable == NULL)
    {
        return NULL;
    }    
    return pLinkTable->pHead;
}

/*
 * get next LinkTableNode
 */
tLinkTableNode * GetNextLinkTableNode(tLinkTable *pLinkTable,tLinkTableNode * pNode)
{
    if(pLinkTable == NULL || pNode == NULL)
    {
        return NULL;
    }
    tLinkTableNode * pTempNode = pLinkTable->pHead;
    while(pTempNode != NULL)
    {    
        if(pTempNode == pNode)
        {
            return pTempNode->pNext;				    
        }
        pTempNode = pTempNode->pNext;
    }
    return NULL;
}

推荐阅读