首页 > 技术文章 > HDU 5446 中国剩余定理+lucas

hsd- 2016-11-30 21:46 原文

Unknown Treasure

Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 2389    Accepted Submission(s): 885


Problem Description
On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown to the map. The mathematician entered the cave because it is there. Somewhere deep in the cave, she found a treasure chest with a combination lock and some numbers on it. After quite a research, the mathematician found out that the correct combination to the lock would be obtained by calculating how many ways are there to pick m different apples among n of them and modulo it with M . M is the product of several different primes.
 

 

Input
On the first line there is an integer T(T20) representing the number of test cases.

Each test case starts with three integers n,m,k(1mn1018,1k10) on a line where k is the number of primes. Following on the next line are k different primes p1,...,pk . It is guaranteed that M=p1p2pk1018 and pi105 for every i{1,...,k} .
 

 

Output
For each test case output the correct combination on a line.
 

 

Sample Input
1 9 5 2 3 5
 

 

Sample Output
6
 

 

Source
 
题意:C(n,m)%p1*p2*p3..pk
题解:中国剩余定理+lucas
  1 #include<iostream>
  2 #include<cstring>
  3 #include<cstdio>
  4 #include<algorithm>
  5 #define ll __int64
  6 #define mod 10000000007
  7 using namespace std;
  8 ll n,m,k;
  9 int t;
 10 ll exm;
 11 ll f[1000010];
 12 void init(int p) {                 //f[n] = n!
 13     f[0] = 1;
 14     for (int i=1; i<=p; ++i) f[i] = f[i-1] * i % p;
 15 }
 16 ll mulmod(ll x,ll y,ll m)
 17 {
 18     ll ans=0;
 19     while(y)
 20     {
 21         if(y%2)
 22         {
 23             ans+=x;
 24             ans%=m;
 25         }
 26         x+=x;
 27         x%=m;
 28         y/=2;
 29     }
 30     ans=(ans+m)%m;
 31     return ans;
 32 }
 33 
 34 void exgcd(ll a, ll b, ll &x, ll &y)
 35 {
 36     if(b == 0)
 37     {
 38         x = 1;
 39         y = 0;
 40         return;
 41     }
 42     exgcd(b, a % b, x, y);
 43     ll tmp = x;
 44     x = y;
 45     y = tmp - (a / b) * y;
 46 }
 47 
 48 ll pow_mod(ll a, ll x, int p)   {
 49     ll ret = 1;
 50     while (x)   {
 51         if (x & 1)  ret = ret * a % p;
 52         a = a * a % p;
 53         x >>= 1;
 54     }
 55     return ret;
 56 }
 57 ll CRT(ll a[],ll m[],ll n)
 58 {
 59     ll M = 1;
 60     ll ans = 0;
 61     for(ll i=0; i<n; i++)
 62         M *= m[i];
 63     for(ll i=0; i<n; i++)
 64     {
 65         ll x, y;
 66         ll Mi = M / m[i];
 67         exgcd(Mi, m[i], x, y);
 68         ans = (ans +mulmod( mulmod( x , Mi ,M ), a[i] , M ) ) % M;
 69     }
 70     ans=(ans + M )% M;
 71     return ans;
 72 }
 73 
 74 ll Lucas(ll n, ll k, ll p) {       //C (n, k) % p
 75      init(p);
 76      ll ret = 1;
 77      while (n && k) {
 78         ll nn = n % p, kk = k % p;
 79         if (nn < kk) return 0;                   //inv (f[kk]) = f[kk] ^ (p - 2) % p
 80         ret = ret * f[nn] * pow_mod (f[kk] * f[nn-kk] % p, p - 2, p) % p;
 81         n /= p, k /= p;
 82      }
 83      return ret;
 84 }
 85 int main ()
 86 {
 87     scanf("%d",&t);
 88     {
 89         for(int i=1;i<=t;i++)
 90         {
 91             ll ee[15];
 92             ll gg[15];
 93             scanf("%I64d %I64d %I64d",&n,&m,&k);
 94             for(ll j=0;j<k;j++)
 95             {
 96                 scanf("%I64d",&exm);
 97                 gg[j]=exm;;
 98                 ee[j]=Lucas(n,m,exm);
 99             }
100             printf("%I64d\n",CRT(ee,gg,k));
101         }
102     }
103     return 0;
104 }

 

 

推荐阅读