首页 > 解决方案 > 如何证明一阶语言的术语是有根据的?

问题描述

目前,我已经开始在 Coq ( VerifiedMathFoundations ) 中证明有关一阶逻辑的定理。我已经证明了演绎定理,但后来我被引理 1 困在了正确性定理上。因此,我紧凑地制定了引理的一个优雅部分,并邀请社区来看看它。这是一个不完整的条款成立的证明。如何正确摆脱这对“承认”?

(* PUBLIC DOMAIN *)
Require Export Coq.Vectors.Vector.
Require Export Coq.Lists.List.
Require Import Bool.Bool.
Require Import Logic.FunctionalExtensionality.
Require Import Coq.Program.Wf.

Definition SetVars  := nat.
Definition FuncSymb := nat.
Definition PredSymb := nat.
Record FSV := {
 fs : FuncSymb;
 fsv : nat;
}.
Record PSV := MPSV{
 ps : PredSymb;
 psv : nat;
}.
Inductive Terms : Type :=
| FVC :> SetVars -> Terms
| FSC (f:FSV) : (Vector.t Terms (fsv f)) -> Terms.

Definition rela : forall (x y:Terms), Prop.
Proof.
fix rela 2.
intros x y.
destruct y as [s|f t].
+ exact False.
+ refine (or _ _).
  exact (Vector.In x t).
  simple refine (@Vector.fold_left Terms Prop _ False (fsv f) t).
  intros Q e.
  exact (or Q (rela x e)).
Defined.

Definition snglV {A} (a:A) := Vector.cons A a 0 (Vector.nil A).

Definition wfr : @well_founded Terms rela.
Proof.
clear.
unfold well_founded.
assert (H : forall (n:Terms) (a:Terms), (rela a n) -> Acc rela a).
{ fix iHn 1.
  destruct n.
  + simpl. intros a b; destruct b.
  + simpl. intros a Q. destruct Q as [L|R].
    * admit.  (* smth like apply Acc_intro. intros m Hm. apply (iHn a). exact Hm. *)
    * admit.  (* like in /Arith/Wf_nat.v *)
}
intros a.
simple refine (H _ _ _).
exact (FSC (Build_FSV 0 1) (snglV a)).
simpl.
apply or_introl.
constructor.
Defined.

它也可以在这里找到:pastebin

更新:至少需要传递性才能获得良好的基础。我也开始了一个证明,但没有完成。

Fixpoint Tra (a b c:Terms) (Hc : rela c b) (Hb : rela b a) {struct a}: rela c a.
Proof.
destruct a.
+ simpl in * |- *.
  exact Hb.
+ simpl in * |- *.
  destruct Hb.
  - apply or_intror.
    revert f t H .
    fix RECU 1.
    intros f t H.
    (* ... *)
Admitted.

标签: coq

解决方案


您可以通过在 上定义一个高度函数来做到这一点Terms,并表明递减rela意味着高度递减:

Require Export Coq.Vectors.Vector.
Require Export Coq.Lists.List.
Require Import Bool.Bool.
Require Import Logic.FunctionalExtensionality.
Require Import Coq.Program.Wf.

Definition SetVars  := nat.
Definition FuncSymb := nat.
Definition PredSymb := nat.
Record FSV := {
 fs : FuncSymb;
 fsv : nat;
}.
Record PSV := MPSV{
 ps : PredSymb;
 psv : nat;
}.

Unset Elimination Schemes.
Inductive Terms : Type :=
| FVC :> SetVars -> Terms
| FSC (f:FSV) : (Vector.t Terms (fsv f)) -> Terms.
Set Elimination Schemes.

Definition Terms_rect (T : Terms -> Type)
                      (H_FVC : forall sv, T (FVC sv))
                      (H_FSC : forall f v, (forall n, T (Vector.nth v n)) -> T (FSC f v)) :=
  fix loopt (t : Terms) : T t :=
    match t with
    | FVC sv  => H_FVC sv
    | FSC f v =>
      let fix loopv s (v : Vector.t Terms s) : forall n, T (Vector.nth v n) :=
        match v with
        | @Vector.nil _ => Fin.case0 _
        | @Vector.cons _ t _ v => fun n => Fin.caseS' n (fun n => T (Vector.nth (Vector.cons _ t _ v) n))
                                                      (loopt t)
                                                      (loopv _ v)
        end in
      H_FSC f v (loopv _ v)
    end.

Definition Terms_ind := Terms_rect.

Fixpoint height (t : Terms) : nat :=
  match t with
  | FVC _ => 0
  | FSC f v => S (Vector.fold_right (fun t acc => Nat.max acc (height t)) v 0)
  end.

Definition rela : forall (x y:Terms), Prop.
Proof.
fix rela 2.
intros x y.
destruct y as [s|f t].
+ exact False.
+ refine (or _ _).
  exact (Vector.In x t).
  simple refine (@Vector.fold_left Terms Prop _ False (fsv f) t).
  intros Q e.
  exact (or Q (rela x e)).
Defined.

Require Import Lia.

Definition wfr : @well_founded Terms rela.
Proof.
apply (Wf_nat.well_founded_lt_compat _ height).
intros t1 t2. induction t2 as [sv2|f2 v2 IH]; simpl; try easy.
intros [t_v|t_sub]; apply Lt.le_lt_n_Sm.
{ clear IH. induction t_v; simpl; lia. }
revert v2 IH t_sub; generalize (fsv f2); clear f2.
intros k v2 IH t_sub.
enough (H : exists n, rela t1 (Vector.nth v2 n)).
{ destruct H as [n H]. apply IH in H. clear IH t_sub.
  transitivity (height (Vector.nth v2 n)); try lia; clear H.
  induction v2 as [|t2 m v2 IHv2].
  - inversion n.
  - apply (Fin.caseS' n); clear n; simpl; try lia.
    intros n. specialize (IHv2 n). lia. }
clear IH.
assert (H : Vector.fold_right (fun t Q => Q \/ rela t1 t) v2 False).
{ revert t_sub; generalize False.
  induction v2 as [|t2 n v2]; simpl in *; trivial.
  intros P H; specialize (IHv2 _ H); clear H.
  induction v2 as [|t2' n v2 IHv2']; simpl in *; tauto. }
clear t_sub.
induction v2 as [|t2 k v2 IH]; simpl in *; try easy.
destruct H as [H|H].
- apply IH in H.
  destruct H as [n Hn].
  now exists (Fin.FS n).
- now exists Fin.F1.
Qed.

(注意使用自定义归纳原则,因为嵌套归纳法,所以需要它。)

然而,这种开发方式过于复杂。避免某些陷阱将大大简化它:

  1. Coq 标准向量库太难用了。由于嵌套的归纳法,这里的问题更加严重。使用简单的列表并在术语上有一个单独的格式良好的谓词可能会更好。

  2. 定义诸如rela在证明模式中的关系会使其更难阅读。例如,考虑以下更简单的替代方案:

    Fixpoint rela x y :=
      match y with
      | FVC _ => False
      | FSC f v =>
        Vector.In x v \/
        Vector.fold_right (fun z P => rela x z \/ P) v False
      end.
    
  3. 向左折叠的归约行为很差,因为它迫使我们对累加器参数进行泛化以使归纳通过。这就是为什么在我的证明中我必须切换到fold_right.


推荐阅读