首页 > 解决方案 > 计算数据框中两列中作为相反对存在的唯一值的数量?

问题描述

我有一个包含数千行用户交互数据的数据框。

我用它来只给我用户 ID 以某些字母开头的用户

df[
df.userA.str.startswith(('b','c','e','f','5')) &
df.userB.str.startswith(('b','c','e','f','5'))
]

返回的东西看起来像这样

   userA column:                           userB column:                           timestamp column: 
   f55570ac-c757-4e1f-b0b2-34997614f929    5ccd7ffd-7776-4a81-81dd-5331972454c2   2017-12-12 00:00:00
   5bfb4313-1d38-4dd2-944d-82bcabea9e31    ebc48322-f8b8-4994-968c-93e8d9e9df1d   2017-12-13 00:03:00
   ebc48322-f8b8-4994-968c-93e8d9e9df1d    5bfb4313-1d38-4dd2-944d-82bcabea9e31   2017-12-14 00:03:00

这个“显示”的是,在第一行,用户 f55570ac- 在那个时间戳跟随用户 5ccdffd。

在第二行中,用户 5bfb4313- 在该时间戳跟随 ebc48322-,在第三行中,用户 ebc48322- 在该时间戳后跟随用户 5bfb4313-,因此具有相互关系

如何计算 整个数据框中相互关系的数量?即,存在于 userA 列和 userB 列中的唯一用户 ID对?

任何想法将不胜感激:)

标签: pythonpandasdataframeuserid

解决方案


如果您只想检查 colB 中的 colA 值,可以使用此代码段

df['userA column: '].isin(df['userB column: ']).sum()

出去:

2

在 userA 和 userB 中查找出现的序列计数

pd.concat([df['userA']+'->'+df['userB'],df['userB']+'->'+df['userA']]).value_counts()

出去:

5bfb4313-1d38-4dd2-944d-82bcabea9e31->ebc48322-f8b8-4994-968c-93e8d9e9df1d    2
ebc48322-f8b8-4994-968c-93e8d9e9df1d->5bfb4313-1d38-4dd2-944d-82bcabea9e31    2
5ccd7ffd-7776-4a81-81dd-5331972454c2->f55570ac-c757-4e1f-b0b2-34997614f929    1
f55570ac-c757-4e1f-b0b2-34997614f929->5ccd7ffd-7776-4a81-81dd-5331972454c2    1

推荐阅读