首页 > 解决方案 > How to unnest (explode) a column in a pandas DataFrame, into multiple rows

问题描述

I have the following DataFrame where one of the columns is an object (list type cell):

df=pd.DataFrame({'A':[1,2],'B':[[1,2],[1,2]]})
df
Out[458]: 
   A       B
0  1  [1, 2]
1  2  [1, 2]

My expected output is:

   A  B
0  1  1
1  1  2
3  2  1
4  2  2

What should I do to achieve this?


Related question

pandas: When cell contents are lists, create a row for each element in the list

Good question and answer but only handle one column with list(In my answer the self-def function will work for multiple columns, also the accepted answer is use the most time consuming apply , which is not recommended, check more info When should I ever want to use pandas apply() in my code?)

标签: pythonpandasdataframe

解决方案


我知道objectdtype 列使数据难以使用 pandas 函数进行转换。当我收到这样的数据时,首先想到的是“展平”或取消嵌套列。

我正在使用 pandas 和 Python 函数来解决这类问题。如果您担心上述解决方案的速度,请查看user3483203 的答案,因为它使用 numpy 并且大多数时候 numpy 更快。如果速度很重要,我推荐Cythonnumba 。


方法0 [pandas >= 0.25]pandas 0.25开始,如果只需要爆炸列,可以使用pandas.DataFrame.explode函数:

df.explode('B')

       A  B
    0  1  1
    1  1  2
    0  2  1
    1  2  2

给定一个数据框,列中为空list或 a NaN。空列表不会引起问题,但NaN需要用 a 填充list

df = pd.DataFrame({'A': [1, 2, 3, 4],'B': [[1, 2], [1, 2], [], np.nan]})
df.B = df.B.fillna({i: [] for i in df.index})  # replace NaN with []
df.explode('B')

   A    B
0  1    1
0  1    2
1  2    1
1  2    2
2  3  NaN
3  4  NaN

方法一 apply + pd.Series(简单易懂但在性能方面不推荐。)

df.set_index('A').B.apply(pd.Series).stack().reset_index(level=0).rename(columns={0:'B'})
Out[463]:
   A  B
0  1  1
1  1  2
0  2  1
1  2  2

方法 2 使用repeatwith DataFrameconstructor ,重新创建你的数据框(性能好,不擅长多列)

df=pd.DataFrame({'A':df.A.repeat(df.B.str.len()),'B':np.concatenate(df.B.values)})
df
Out[465]:
   A  B
0  1  1
0  1  2
1  2  1
1  2  2

例如方法 2.1 除了 A 我们还有 A.1 .....An 如果我们仍然使用上面的方法(方法 2),我们很难一一重新创建列。

解决方案:join或者merge使用index“unnest”之后的单列

s=pd.DataFrame({'B':np.concatenate(df.B.values)},index=df.index.repeat(df.B.str.len()))
s.join(df.drop('B',1),how='left')
Out[477]:
   B  A
0  1  1
0  2  1
1  1  2
1  2  2

如果您需要与以前完全相同的列顺序,reindex请在末尾添加。

s.join(df.drop('B',1),how='left').reindex(columns=df.columns)

方法 3 重新创建list

pd.DataFrame([[x] + [z] for x, y in df.values for z in y],columns=df.columns)
Out[488]:
   A  B
0  1  1
1  1  2
2  2  1
3  2  2

如果多于两列,请使用

s=pd.DataFrame([[x] + [z] for x, y in zip(df.index,df.B) for z in y])
s.merge(df,left_on=0,right_index=True)
Out[491]:
   0  1  A       B
0  0  1  1  [1, 2]
1  0  2  1  [1, 2]
2  1  1  2  [1, 2]
3  1  2  2  [1, 2]

方法 4 使用reindexloc

df.reindex(df.index.repeat(df.B.str.len())).assign(B=np.concatenate(df.B.values))
Out[554]:
   A  B
0  1  1
0  1  2
1  2  1
1  2  2

#df.loc[df.index.repeat(df.B.str.len())].assign(B=np.concatenate(df.B.values))

列表仅包含唯一值时的方法5 :

df=pd.DataFrame({'A':[1,2],'B':[[1,2],[3,4]]})
from collections import ChainMap
d = dict(ChainMap(*map(dict.fromkeys, df['B'], df['A'])))
pd.DataFrame(list(d.items()),columns=df.columns[::-1])
Out[574]:
   B  A
0  1  1
1  2  1
2  3  2
3  4  2

方法 6 用于numpy高性能:

newvalues=np.dstack((np.repeat(df.A.values,list(map(len,df.B.values))),np.concatenate(df.B.values)))
pd.DataFrame(data=newvalues[0],columns=df.columns)
   A  B
0  1  1
1  1  2
2  2  1
3  2  2

方法7 使用基函数itertools cyclechain:纯python解决方案只是为了好玩

from itertools import cycle,chain
l=df.values.tolist()
l1=[list(zip([x[0]], cycle(x[1])) if len([x[0]]) > len(x[1]) else list(zip(cycle([x[0]]), x[1]))) for x in l]
pd.DataFrame(list(chain.from_iterable(l1)),columns=df.columns)
   A  B
0  1  1
1  1  2
2  2  1
3  2  2

泛化到多列

df=pd.DataFrame({'A':[1,2],'B':[[1,2],[3,4]],'C':[[1,2],[3,4]]})
df
Out[592]:
   A       B       C
0  1  [1, 2]  [1, 2]
1  2  [3, 4]  [3, 4]

自定义功能:

def unnesting(df, explode):
    idx = df.index.repeat(df[explode[0]].str.len())
    df1 = pd.concat([
        pd.DataFrame({x: np.concatenate(df[x].values)}) for x in explode], axis=1)
    df1.index = idx

    return df1.join(df.drop(explode, 1), how='left')


unnesting(df,['B','C'])
Out[609]:
   B  C  A
0  1  1  1
0  2  2  1
1  3  3  2
1  4  4  2

逐列取消嵌套

以上所有方法都是关于垂直取消嵌套和分解,如果您确实需要水平扩展列表,请与pd.DataFrame构造函数检查

df.join(pd.DataFrame(df.B.tolist(),index=df.index).add_prefix('B_'))
Out[33]:
   A       B       C  B_0  B_1
0  1  [1, 2]  [1, 2]    1    2
1  2  [3, 4]  [3, 4]    3    4

更新功能

def unnesting(df, explode, axis):
    if axis==1:
        idx = df.index.repeat(df[explode[0]].str.len())
        df1 = pd.concat([
            pd.DataFrame({x: np.concatenate(df[x].values)}) for x in explode], axis=1)
        df1.index = idx

        return df1.join(df.drop(explode, 1), how='left')
    else :
        df1 = pd.concat([
                         pd.DataFrame(df[x].tolist(), index=df.index).add_prefix(x) for x in explode], axis=1)
        return df1.join(df.drop(explode, 1), how='left')

测试输出

unnesting(df, ['B','C'], axis=0)
Out[36]:
   B0  B1  C0  C1  A
0   1   2   1   2  1
1   3   4   3   4  2

2021-02-17 更新原始爆炸功能

def unnesting(df, explode, axis):
    if axis==1:
        df1 = pd.concat([df[x].explode() for x in explode], axis=1)
        return df1.join(df.drop(explode, 1), how='left')
    else :
        df1 = pd.concat([
                         pd.DataFrame(df[x].tolist(), index=df.index).add_prefix(x) for x in explode], axis=1)
        return df1.join(df.drop(explode, 1), how='left')

推荐阅读