首页 > 解决方案 > keras:如何编写定制的损失函数来聚合帧级预测到歌曲级预测

问题描述

我正在做歌曲流派分类(2类)。对于每首歌曲,我将它们切成小帧 (5s) 以生成 MFCC 作为神经网络的输入特征,并且每一帧都有一个相关的歌曲流派标签。

数据如下所示:

 name         label   feature
 ....
 song_i_frame1 label   feature_vector_frame1
 song_i_frame2 label   feature_vector_frame2
 ...
 song_i_framek label   feature_vector_framek
 ...

我知道我可以随机选择 80% 的歌曲(它们的小帧)作为训练数据,其余的作为测试数据。但是现在我写 X_train 的方式是帧级别的帧,而 biney 交叉熵损失函数是在帧级别定义的。我想知道如何自定义损失函数,使其在帧级预测的聚合(例如歌曲的每一帧预测的多数票)上最小化。

目前,我所拥有的是:

model_19mfcc = Model(input_shape = (X_train19.shape[1], X_train19.shape[2]))
model_19mfcc.compile(loss='binary_crossentropy', optimizer="RMSProp", metrics=["accuracy"])
history_fit = model_19mfcc.fit(X_train19, y_train,validation_split=0.25, batch_size = 1800/50, epochs= 200)

此外,当我将训练和测试数据输入 keras 时,数据的相应 ID(名称)丢失,将数据(名称、lebel 和特征)保存在单独的 pandas 数据框中并匹配来自 keras 的预测好的做法?还是有其他好的选择?

提前致谢!

标签: pythonmachine-learningaudiokerasdeep-learning

解决方案


类型分类通常不需要定制的损失函数。可以使用多实例学习(MIL)设置将歌曲拆分为多个预测窗口的组合模型。

MIL 是一种监督学习方法,其中标签不是在每个独立样本(实例)上,而是在实例的“袋子”(无序集)上。在您的情况下,实例是每 5 秒的 MFCC 功能窗口,而包是整首歌曲。

在 Keras 中,我们使用TimeDistributed层来为所有窗口执行我们的模型。然后我们使用 结合结果GlobalAveragePooling1D,有效地实现跨窗口的均值投票。这比多数投票更容易区分。

下面是一个可运行的示例:

import math

import keras
import librosa
import pandas
import numpy
import sklearn

def window_model(n_bands, n_frames, n_classes, hidden=32):
   from keras.layers import Input, Dense, Flatten, Conv2D, MaxPooling2D

   out_units = 1 if n_classes == 2 else n_classes
   out_activation = 'sigmoid' if n_classes == 2 else 'softmax'

   shape = (n_bands, n_frames, 1)

   # Basic CNN model
   # An MLP could also be used, but may need to reshape on input and output
   model = keras.Sequential([
       Conv2D(16, (3,3), input_shape=shape),
       MaxPooling2D((2,3)),
       Conv2D(16, (3,3)),
       MaxPooling2D((2,2)),
       Flatten(),
       Dense(hidden, activation='relu'),
       Dense(hidden, activation='relu'),
       Dense(out_units, activation=out_activation),
   ])
   return model

def song_model(n_bands, n_frames, n_windows, n_classes=3):
    from keras.layers import Input, TimeDistributed, GlobalAveragePooling1D

    # Create the frame-wise model, will be reused across all frames
    base = window_model(n_bands, n_frames, n_classes)
    # GlobalAveragePooling1D expects a 'channel' dimension at end
    shape = (n_windows, n_bands, n_frames, 1)

    print('Frame model')
    base.summary()

    model = keras.Sequential([
        TimeDistributed(base, input_shape=shape),
        GlobalAveragePooling1D(),
    ])

    print('Song model')
    model.summary()

    model.compile(loss='categorical_crossentropy', optimizer='SGD', metrics=['acc'])
    return model


def extract_features(path, sample_rate, n_bands, hop_length, n_frames, window_length, song_length):
    # melspectrogram might perform better with CNNs
    from librosa.feature import mfcc

    # Load a fixed length section of sound
    # Might need to pad if some songs are too short
    y, sr = librosa.load(path, sr=sample_rate, offset=0, duration=song_length)
    assert sr == sample_rate, sr
    _song_length = len(y)/sample_rate

    assert _song_length == song_length, _song_length

    # Split into windows
    window_samples = int(sample_rate * window_length)
    window_hop = window_samples//2 # use 50% overlap
    windows = librosa.util.frame(y, frame_length=window_samples, hop_length=window_hop)

    # Calculate features for each window
    features = []
    for w in range(windows.shape[1]):
        win = windows[:, w]
        f = mfcc(y=win, sr=sample_rate, n_mfcc=n_bands,
                 hop_length=hop_length, n_fft=2*hop_length)
        f = numpy.expand_dims(f, -1) # add channels dimension 
        features.append(f)

    features = numpy.stack(features)
    return features

def main():

    # Settings for our model
    n_bands = 13 # MFCCs
    sample_rate = 22050
    hop_length = 512
    window_length = 5.0
    song_length_max = 1.0*60
    n_frames = math.ceil(window_length / (hop_length/sample_rate))
    n_windows = math.floor(song_length_max / (window_length/2))-1

    model = song_model(n_bands, n_frames, n_windows)

    # Generate some example data
    ex =  librosa.util.example_audio_file()
    examples = 8
    numpy.random.seed(2)
    songs = pandas.DataFrame({
        'path': [ex] * examples,
        'genre': numpy.random.choice([ 'rock', 'metal', 'blues' ], size=examples),
    })
    assert len(songs.genre.unique() == 3) 

    print('Song data')
    print(songs)

    def get_features(path):
        f = extract_features(path, sample_rate, n_bands,
                    hop_length, n_frames, window_length, song_length_max)
        return f

    from sklearn.preprocessing import LabelBinarizer

    binarizer = LabelBinarizer()
    y = binarizer.fit_transform(songs.genre.values)
    print('y', y.shape, y)

    features = numpy.stack([ get_features(p) for p in songs.path ])
    print('features', features.shape)

    model.fit(features, y) 


if __name__ == '__main__':
    main()

该示例输出内部和组合模型摘要:

Frame model
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_1 (Conv2D)            (None, 11, 214, 16)       160       
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 5, 71, 16)         0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 3, 69, 16)         2320      
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 1, 34, 16)         0         
_________________________________________________________________
flatten_1 (Flatten)          (None, 544)               0         
_________________________________________________________________
dense_1 (Dense)              (None, 32)                17440     
_________________________________________________________________
dense_2 (Dense)              (None, 32)                1056      
_________________________________________________________________
dense_3 (Dense)              (None, 3)                 99        
=================================================================
Total params: 21,075
Trainable params: 21,075
Non-trainable params: 0
_________________________________________________________________
Song model
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
time_distributed_1 (TimeDist (None, 23, 3)             21075     
_________________________________________________________________
global_average_pooling1d_1 ( (None, 3)                 0         
=================================================================
Total params: 21,075
Trainable params: 21,075
Non-trainable params: 0
_________________________________________________________________

以及输入模型的特征向量的形状:

features (8, 23, 13, 216, 1)

8首歌曲,每首23个窗口,13个MFCC频段,每个窗口216帧。还有一个尺寸为 1 的第五维度,让 Keras 开心……


推荐阅读