首页 > 解决方案 > 基本伊莎贝尔序列极限证明

问题描述

正如数百人在我之前尝试过的那样,我试图通过证明极其基本的数学定理来学习伊莎贝尔。这项任务很艰巨,因为出于某种原因,大多数 Isabelle 教程和书籍都侧重于程序分析(列表、树、递归函数)或基本命题/一阶逻辑,其中的练习在很大程度上可以通过(induct_tac "xs")几个 apply 语句来解决.

然而,通过挖掘现有伊莎贝尔理论的一页又一页,我已经弄清楚了如何定义一些东西。在这种情况下,我定义了一个序列的极限:

theory Exercises
  imports Main "Isabelle2019.app/Contents/Resources/Isabelle2019/src/HOL/Rat"
begin

definition limit :: "(nat ⇒ rat) ⇒ rat ⇒ bool"
  where limit_def: "limit sequence l = (∃(d::nat). ∀(e::nat)≥d. ∀(ε::rat). abs((sequence d) - l) ≤ ε)"

end

然后我试图证明这一点lim 1/n --> 0。(抱歉,Latex 不适用于 Stack Overflow)。

我想到的证明很简单:给我一个epsilon,然后我会告诉你d一个1/d < epsilon。但是,在几个最基本的步骤之后,我被困住了。我能得到关于如何完成这个证明的提示吗?

lemma limit_simple: "limit (λ (x::nat). (Fract 1 (int x))) (rat 0)"
  unfolding limit_def
proof
  fix ε::rat
  obtain d_rat::rat where d_rat: "(1 / ε) < d_rat" using linordered_field_no_ub by auto
  then obtain d_int::int where d_int: "d_int = (⌊d_rat⌋ + 1)" by auto
  then obtain d::nat where "d = max(d_int, 0)"
end

从这个证明的第一行可以看出,我已经被困在试图说服伊莎贝尔相信有一个自然数d大于1/epsilon每个有理数epsilon......

标签: isabelleprooftheorem-proving

解决方案


首先,你的定义limit是错误的。你混淆了量词顺序。我会这样写:

definition limit :: "(nat ⇒ rat) ⇒ rat ⇒ bool"
  where "limit sequence l = (∀ε>0. ∃d. ∀e≥d. ¦sequence e - l¦ ≤ ε)"

然后这里是如何证明你想要的东西:

lemma limit_simple: "limit (λ(x::nat). 1 / of_nat x) 0"
  unfolding limit_def
proof (intro allI impI)
  fix ε :: rat assume "ε > 0"
  obtain d_rat::rat where d_rat: "1 / ε < d_rat" using linordered_field_no_ub by auto
  define d where "d = nat (⌊d_rat⌋ + 1)"

  have "d_rat ≤ of_nat d"
    unfolding d_def by linarith

  from ‹ε > 0› have "0 < 1 / ε" by simp
  also have "1 / ε < d_rat" by fact
  also have "d_rat ≤ of_nat d" by fact
  finally have "d > 0" by simp

  have "d_rat > 0" using ‹1 / ε > 0› and d_rat by linarith

  have "∀e≥d. ¦1 / of_nat e - 0¦ ≤ ε"
  proof (intro allI impI)
    fix e :: nat
    assume "d ≤ e"
    have "¦1 / rat_of_nat e - 0¦ = 1 / rat_of_nat e" by simp
    have "d_rat ≤ rat_of_nat e"
      using ‹d ≤ e› and ‹d_rat ≤ of_nat d› by simp
    hence "1 / rat_of_nat e ≤ 1 / d_rat"
      using ‹d ≤ e› and ‹d > 0› and ‹d_rat > 0›
      by (intro divide_left_mono) auto
    also have "1 / d_rat < ε"
      using ‹ε > 0› and ‹d_rat > 0› and d_rat by (auto simp: field_simps)
    finally show "¦1 / rat_of_nat e - 0¦ ≤ ε" by simp
  qed
  thus "∃d. ∀e≥d. ¦1 / of_nat e - 0¦ ≤ ε"
    by auto
qed

对于实数而不是有理数,证明看起来基本相同。它当然可以自动化一点(好吧,如果你导入 Isabelle 的分析库,它可以在一个步骤中自动证明整个事情)。

在“现实世界”的 Isabelle 中,限制用过滤器表示,并且围绕它们有一个大型库。这使得上述证明陈述变得不那么乏味。

更新:回复您的评论:是的,这有点冗长。在惯用的 Isabelle 中,我会这样写证明:

lemma A: "filterlim (λn. 1 / real n) (nhds 0) sequentially"
proof
  fix ε :: real assume "ε > 0"
  have "∀⇩F n in sequentially. n > nat ⌈1 / ε⌉"
    by (rule eventually_gt_at_top)
  hence "∀⇩F n in sequentially. real n > 1 / ε"
    by eventually_elim (use ‹ε > 0› in linarith)
  moreover have "∀⇩F n in sequentially. n > 0"
    by (rule eventually_gt_at_top)
  ultimately show "∀⇩F n in sequentially. dist (1 / real n) 0 < ε"
    by eventually_elim (use ‹ε > 0› in ‹auto simp: field_simps›)
qed

这个过滤器的概念和一个“最终”持有的属性(这就是这个∀⇩F语法的意思)非常强大。

更好的是,您可以将上面的证明进一步模块化,首先证明 1/x趋向于 0 对于xa real 的 →∞ x,然后证明对于 a naturalreal n的 →∞ 趋于实数 ∞ ,然后简单地结合这两个陈述:nn

lemma B: "filterlim (λx::real. 1 / x) (nhds 0) at_top"
proof
  fix ε :: real assume "ε > 0"
  have "∀⇩F x in at_top. x > 1 / ε"
    by (rule eventually_gt_at_top)
  thus "∀⇩F (x::real) in at_top. dist (1 / x) 0 < ε"
    using eventually_gt_at_top[of 0]
    by eventually_elim (use ‹ε > 0› in ‹auto simp: field_simps›)
qed

lemma C: "filterlim real at_top sequentially"
  unfolding filterlim_at_top
proof
  fix C :: real
  have "∀⇩F n in sequentially. n ≥ nat ⌈C⌉"
    by (rule eventually_ge_at_top)
  thus "∀⇩F n in sequentially. C ≤ real n"
    by eventually_elim linarith
qed

lemma D: "filterlim (λn. 1 / real n) (nhds 0) sequentially"
  by (rule filterlim_compose[OF B C])

或者,当然,您可以简单地导入HOL-Real_Asymp.Real_Asymp,然后所有这些都使用by real_asymp. ;)

你真的不应该以从头开始做所有事情的难度来判断一个系统,特别是当有一种既定的惯用方式来做这些事情并且你正在积极地做一些不同的事情时。标准库及其习语是系统的重要组成部分。

在证明助手中模仿纸笔式推理是很困难的,尤其是在许多事情是“显而易见的”的渐近学领域。幸运的是,有了一个好的库,确实可以实现某种近似的推理。当然,如果你愿意,你可以进行显式的 ε-δ-推理,但这只会让你的生活更加困难。当我开始在 Isabelle 中使用限制时,我犯了同样的错误(因为 ε-δ 是处理限制的唯一正式方法,我知道而且我不理解所有花哨的过滤器的东西),但是当我开始理解过滤器时更多,事情变得更清晰、更容易、更自然。


推荐阅读