首页 > 解决方案 > 定时器在相同的设置下表现不同

问题描述

我正在使用 STM32F401RCT6 芯片,我正在尝试做一些受控的 PWM 输出。我将 TIM1、2、3 和 11 用于 PWM。

问题是,当我为定时器 1 设置与任何其他定时器相同的周期时,周期长度相同,但脉冲不同。例如,当使用周期 4999 时,TIM1 是脉冲 6.9us,而对于其他脉冲,则为 82.4us。

图片显示周期相同。

下图显示了脉冲长度的差异。

当我将脉冲从 10 更改为 1000 时,TIM1 的脉冲为 720us,TIM2 的脉冲为 794us。

当我看到差异时,我首先想到的是定时器的频率不同,但问题是它也会有不同的 PWM 脉冲频率,但事实并非如此。

谁能说,什么会导致定时器 1 的脉冲长度更短?

我的设置如下:

void MX_TIM11_Init(void)
{
  TIM_MasterConfigTypeDef sMasterConfig = {0};
  TIM_OC_InitTypeDef sConfigOC = {0};

  htim11.Instance = TIM11;
  htim11.Init.Prescaler = HAL_RCC_GetPCLK2Freq()/124999;
  htim11.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim11.Init.Period = 0;
  htim11.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim11.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim11) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_TIM_PWM_Init(&htim11) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC1REF;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_ENABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_PWM1;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  if (HAL_TIM_PWM_ConfigChannel(&htim11, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
  HAL_TIM_MspPostInit(&htim11);
}

void MX_TIM2_Init(void)
{
  TIM_MasterConfigTypeDef sMasterConfig = {0};
  TIM_OC_InitTypeDef sConfigOC = {0};

  htim2.Instance = TIM2;
  htim2.Init.Prescaler = HAL_RCC_GetPCLK1Freq()/124999;
  htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim2.Init.Period = 0;
  htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC1REF;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_ENABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_PWM1;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
  HAL_TIM_MspPostInit(&htim2);
}

void MX_TIM3_Init(void)
{
  TIM_MasterConfigTypeDef sMasterConfig = {0};
  TIM_OC_InitTypeDef sConfigOC = {0};

  htim3.Instance = TIM3;
  htim3.Init.Prescaler = HAL_RCC_GetPCLK1Freq()/124999;
  htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim3.Init.Period = 0;
  htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_PWM_Init(&htim3) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC1REF;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_ENABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_PWM1;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
  HAL_TIM_MspPostInit(&htim3);
}

void MX_TIM1_Init(void)
{
  TIM_MasterConfigTypeDef sMasterConfig = {0};
  TIM_OC_InitTypeDef sConfigOC = {0};
  TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};

  htim1.Instance = TIM1;
  htim1.Init.Prescaler = HAL_RCC_GetPCLK2Freq()/124999;
  htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim1.Init.Period = 0;
  htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim1.Init.RepetitionCounter = 0;
  htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC1REF;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_ENABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_PWM1;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
  sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
  if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
  sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
  sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
  sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
  sBreakDeadTimeConfig.DeadTime = 0;
  sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
  sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
  sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
  if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
  {
    Error_Handler();
  }
  HAL_TIM_MspPostInit(&htim1);
}

我有以下功能来设置 PWM 的参数并启动它:

void setPWM(TIM_HandleTypeDef timer, uint32_t channel, uint16_t period)
{
    // stop generation of PWM
    HAL_TIM_PWM_Stop(&timer, channel);
    TIM_OC_InitTypeDef sConfigOC;
    // set the period duration
    timer.Init.Period = period;
    // re-initialize with new period value
    HAL_TIM_PWM_Init(&timer);
    sConfigOC.OCMode = TIM_OCMODE_PWM1;
    // set the pulse duration
    sConfigOC.Pulse = 10;
    sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
    sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
    HAL_TIM_PWM_ConfigChannel(&timer, &sConfigOC, channel);
    // start PWM generation
    HAL_TIM_PWM_Start(&timer, channel);
}

更新:我需要在运行期间更改周期,似乎如果我多次调用 setPWM 函数,就会出现问题。第一个电话似乎表现得应该如此。奇怪的是,我对所有计时器都以相同的方式称呼它,但只有一个会失去脉冲的长度。但是现在我已经没有什么想法可以尝试找到问题的核心了。

有什么想法我可以尝试找出是什么原因造成的吗?

谢谢你,哈娜

标签: cstm32

解决方案


我现在所有计时器都以相同的方式工作。我不确定为什么它对定时器 1 的反应不同,但如果我不再次调用 setPWM() 而是在运行时设置 ARR 寄存器,它对所有定时器的行为都是相同的。

timer.Instance->ARR = period;

推荐阅读