首页 > 解决方案 > Gekko - 优化调度的不可行解决方案,与 gurobi 进行比较

问题描述

我对 Gurobi 有点熟悉,但由于 Gekko 似乎有一些优势,所以过渡到了 Gekko。不过,我遇到了一个问题,我将使用我想象中的苹果园来说明这一点。5 周的收获期 ( #horizon: T=5) 即将到来,我的——非常微薄的——农产品将是: [3.0, 7.0, 9.0, 5.0, 4.0] 我自己保留一些苹果[2.0, 4.0, 2.0, 4.0, 2.0],剩余的农产品我将在农贸市场以以下价格出售:[0.8, 0.9, 0.5, 1.2, 1.5]。我有可容纳 6 个苹果的存储空间,因此我可以提前计划并在最佳时机出售苹果,从而最大限度地提高收入。我尝试使用以下模型确定最佳时间表:

m       = GEKKO()
m.time  = np.linspace(0,4,5)
orchard   = m.Param([3.0, 7.0, 9.0, 5.0, 4.0])
demand    = m.Param([2.0, 4.0, 2.0, 4.0, 2.0]) 
price     = m.Param([0.8, 0.9, 0.5, 1.2, 1.5])

### manipulated variables
# selling on the market
sell                = m.MV(lb=0)
sell.DCOST          = 0
sell.STATUS         = 1
# saving apples
storage_out         = m.MV(value=0, lb=0)
storage_out.DCOST   = 0      
storage_out.STATUS  = 1 
storage_in          = m.MV(lb=0)
storage_in.DCOST    = 0
storage_in.STATUS   = 1

### storage space 
storage         = m.Var(lb=0, ub=6)
### constraints
# storage change
m.Equation(storage.dt() == storage_in - storage_out) 

# balance equation
m.Equation(sell + storage_in + demand == storage_out + orchard)

# Objective: argmax sum(sell[t]*price[t]) for t in [0,4]
m.Maximize(sell*price)
m.options.IMODE=6
m.options.NODES=3
m.options.SOLVER=3
m.options.MAX_ITER=1000
m.solve()

由于某种原因,这是不可行的(错误代码 = 2)。有趣的是,如果设置demand[0] to 3.0, instead of 2.0(即等于orchard[0],模型确实会产生一个成功的解决方案。

  1. 为什么会这样?
  2. 即使是“成功”的输出值也有点奇怪:存储空间没有被使用一次,并且storage_out在最后一个时间步中没有得到适当的限制。显然,我没有正确制定约束。我应该怎么做才能获得与 gurobi 输出相当的实际结果(参见下面的代码)?
output = {'sell'    : list(sell.VALUE),
        's_out'     : list(storage_out.VALUE),
        's_in'      : list(storage_in.VALUE), 
        'storage'   : list(storage.VALUE)}
df_gekko = pd.DataFrame(output)
df_gekko.head()

>   sell  s_out     s_in        storage
0   0.0   0.000000  0.000000    0.0
1   3.0   0.719311  0.719311    0.0
2   7.0   0.859239  0.859239    0.0
3   1.0   1.095572  1.095572    0.0
4   26.0  24.124924 0.124923    0.0 

Gurobi 模型用 求解demand = [3.0, 4.0, 2.0, 4.0, 2.0]。请注意,gurobi 也产生了一个解决方案demand = [2.0, 4.0, 2.0, 4.0, 2.0]。这对结果只有微不足道的影响:在 t=0 时售出的n 个1苹果变为.

T = 5
m = gp.Model()
### horizon (five weeks)

### supply, demand and price data  
orchard   = [3.0, 7.0, 9.0, 5.0, 4.0]
demand    = [3.0, 4.0, 2.0, 4.0, 2.0] 
price     = [0.8, 0.9, 0.5, 1.2, 1.5]

### manipulated variables
# selling on the market
sell = m.addVars(T)

# saving apples
storage_out = m.addVars(T)
m.addConstr(storage_out[0] == 0)
storage_in  = m.addVars(T)

# storage space
storage = m.addVars(T)
m.addConstrs((storage[t]<=6) for t in range(T))
m.addConstrs((storage[t]>=0) for t in range(T))
m.addConstr(storage[0] == 0)

# storage change
#m.addConstr(storage[0] == (0 - storage_out[0]*delta_t + storage_in[0]*delta_t))
m.addConstrs(storage[t] == (storage[t-1] - storage_out[t] + storage_in[t]) for t in range(1, T))

# balance equation
m.addConstrs(sell[t] + demand[t] + storage_in[t] == (storage_out[t] + orchard[t]) for t in range(T))

# Objective: argmax sum(a_sell[t]*a_price[t] - b_buy[t]*b_price[t])
obj = gp.quicksum((price[t]*sell[t]) for t in range(T))
m.setObjective(obj, gp.GRB.MAXIMIZE)
m.optimize()

输出:

    sell    storage_out storage_in  storage
0   0.0     0.0         0.0         0.0
1   3.0     0.0         0.0         0.0
2   1.0     0.0         6.0         6.0
3   1.0     0.0         0.0         6.0
4   8.0     6.0         0.0         0.0

标签: optimizationtimeschedulegekko

解决方案


您可以通过以下方式获得成功的解决方案:

m.options.NODES=2

问题是它正在求解主节点点之间的平衡方程NODES=3。您的微分方程具有线性解,因此NODES=2应该足够准确。

以下是改进解决方案的其他几种方法:

  • 对将库存移入或移出存储设置小额罚款。否则,求解器可以用 找到大的任意值storage_in = storage_out
  • 我用m.Minimize(1e-6*storage_in)m.Minimize(1e-6*storage_out)
  • 因为初始条件通常是固定的,所以我在开始时使用零值只是为了确保计算第一个点。
  • 如果它们以整数单位出售和存储,我也切换到整数变量。如果你想要一个整数解,你需要切换到 APPT 求解器SOLVER=1
 Successful solution
 
 ---------------------------------------------------
 Solver         :  APOPT (v1.0)
 Solution time  :  0.058899999999999994 sec
 Objective      :  -17.299986
 Successful solution
 ---------------------------------------------------
 

Sell
[0.0, 0.0, 4.0, 1.0, 1.0, 8.0]
Storage Out
[0.0, 0.0, 1.0, 0.0, 0.0, 6.0]
Storage In
[0.0, 1.0, 0.0, 6.0, 0.0, 0.0]
Storage
[0.0, 1.0, 0.0, 6.0, 6.0, 0.0]

这是修改后的脚本。

from gekko import GEKKO
import numpy as np

m       = GEKKO(remote=False)
m.time  = np.linspace(0,5,6)
orchard   = m.Param([0.0, 3.0, 7.0, 9.0, 5.0, 4.0])
demand    = m.Param([0.0, 2.0, 4.0, 2.0, 4.0, 2.0]) 
price     = m.Param([0.0, 0.8, 0.9, 0.5, 1.2, 1.5])

### manipulated variables
# selling on the market
sell                = m.MV(lb=0, integer=True)
sell.DCOST          = 0
sell.STATUS         = 1
# saving apples
storage_out         = m.MV(value=0, lb=0, integer=True)
storage_out.DCOST   = 0      
storage_out.STATUS  = 1 
storage_in          = m.MV(lb=0, integer=True)
storage_in.DCOST    = 0
storage_in.STATUS   = 1

### storage space 
storage         = m.Var(lb=0, ub=6, integer=True)
### constraints
# storage change
m.Equation(storage.dt() == storage_in - storage_out) 

# balance equation
m.Equation(sell + storage_in + demand == storage_out + orchard)

# Objective: argmax sum(sell[t]*price[t]) for t in [0,4]
m.Maximize(sell*price)
m.Minimize(1e-6 * storage_in)
m.Minimize(1e-6 * storage_out)
m.options.IMODE=6
m.options.NODES=2
m.options.SOLVER=1
m.options.MAX_ITER=1000
m.solve()

print('Sell')
print(sell.value)
print('Storage Out')
print(storage_out.value)
print('Storage In')
print(storage_in.value)
print('Storage')
print(storage.value)

推荐阅读