首页 > 技术文章 > 第4章 深度学习计算

panghuhu 2021-01-12 20:29 原文

深度学习简介

预备知识

深度学习基础

深度学习计算

模型构造

让我们回顾一下在3.10节(多层感知机的简洁实现)中含单隐藏层的多层感知机的实现方法。我们首先构造Sequential实例,然后依次添加两个全连接层。其中第一层的输出大小为256,即隐藏层单元个数是256;第二层的输出大小为10,即输出层单元个数是10。我们在上一章的其他节中也使用了Sequential类构造模型。这里我们介绍另外一种基于Module类的模型构造方法:它让模型构造更加灵活。

注:其实前面我们陆陆续续已经使用了这些方法了,本节系统介绍一下。

继承Module类来构造模型

Module类是nn模块里提供的一个模型构造类,是所有神经网络模块的基类,我们可以继承它来定义我们想要的模型。下面继承Module类构造本节开头提到的多层感知机。这里定义的MLP类重载了Module类的__init__函数和forward函数。它们分别用于创建模型参数和定义前向计算。前向计算也即正向传播。

import torch
from torch import nn

class MLP(nn.Module):
    # 声明带有模型参数的层,这里声明了两个全连接层
    def __init__(self, **kwargs):
        # 调用MLP父类Module的构造函数来进行必要的初始化。这样在构造实例时还可以指定其他函数
        # 参数,如“模型参数的访问、初始化和共享”一节将介绍的模型参数params
        super(MLP, self).__init__(**kwargs)
        self.hidden = nn.Linear(784, 256) # 隐藏层
        self.act = nn.ReLU()
        self.output = nn.Linear(256, 10)  # 输出层
         

    # 定义模型的前向计算,即如何根据输入x计算返回所需要的模型输出
    def forward(self, x):
        a = self.act(self.hidden(x))
        return self.output(a)

以上的MLP类中无须定义反向传播函数。系统将通过自动求梯度而自动生成反向传播所需的backward函数。

我们可以实例化MLP类得到模型变量net。下面的代码初始化net并传入输入数据X做一次前向计算。其中,net(X)会调用MLP继承自Module类的__call__函数,这个函数将调用MLP类定义的forward函数来完成前向计算。

X = torch.rand(2, 784)
net = MLP()
print(net)
net(X)

输出:

MLP(
  (hidden): Linear(in_features=784, out_features=256, bias=True)
  (act): ReLU()
  (output): Linear(in_features=256, out_features=10, bias=True)
)
tensor([[-0.1798, -0.2253,  0.0206, -0.1067, -0.0889,  0.1818, -0.1474,  0.1845,
         -0.1870,  0.1970],
        [-0.1843, -0.1562, -0.0090,  0.0351, -0.1538,  0.0992, -0.0883,  0.0911,
         -0.2293,  0.2360]], grad_fn=<ThAddmmBackward>)

注意,这里并没有将Module类命名为Layer(层)或者Model(模型)之类的名字,这是因为该类是一个可供自由组建的部件。它的子类既可以是一个层(如PyTorch提供的Linear类),又可以是一个模型(如这里定义的MLP类),或者是模型的一个部分。我们下面通过两个例子来展示它的灵活性。

Module的子类

我们刚刚提到,Module类是一个通用的部件。事实上,PyTorch还实现了继承自Module的可以方便构建模型的类: 如SequentialModuleListModuleDict等等。

Sequential

当模型的前向计算为简单串联各个层的计算时,Sequential类可以通过更加简单的方式定义模型。这正是Sequential类的目的:它可以接收一个子模块的有序字典(OrderedDict)或者一系列子模块作为参数来逐一添加Module的实例,而模型的前向计算就是将这些实例按添加的顺序逐一计算。

下面我们实现一个与Sequential类有相同功能的MySequential类。这或许可以帮助读者更加清晰地理解Sequential类的工作机制。

class MySequential(nn.Module):
    from collections import OrderedDict
    def __init__(self, *args):
        super(MySequential, self).__init__()
        if len(args) == 1 and isinstance(args[0], OrderedDict): # 如果传入的是一个OrderedDict
            for key, module in args[0].items():
                self.add_module(key, module)  # add_module方法会将module添加进self._modules(一个OrderedDict)
        else:  # 传入的是一些Module
            for idx, module in enumerate(args):
                self.add_module(str(idx), module)
    def forward(self, input):
        # self._modules返回一个 OrderedDict,保证会按照成员添加时的顺序遍历成员
        for module in self._modules.values():
            input = module(input)
        return input

我们用MySequential类来实现前面描述的MLP类,并使用随机初始化的模型做一次前向计算。

net = MySequential(
        nn.Linear(784, 256),
        nn.ReLU(),
        nn.Linear(256, 10), 
        )
print(net)
net(X)

输出:

MySequential(
  (0): Linear(in_features=784, out_features=256, bias=True)
  (1): ReLU()
  (2): Linear(in_features=256, out_features=10, bias=True)
)
tensor([[-0.0100, -0.2516,  0.0392, -0.1684, -0.0937,  0.2191, -0.1448,  0.0930,
          0.1228, -0.2540],
        [-0.1086, -0.1858,  0.0203, -0.2051, -0.1404,  0.2738, -0.0607,  0.0622,
          0.0817, -0.2574]], grad_fn=<ThAddmmBackward>)

可以观察到这里MySequential类的使用跟3.10节(多层感知机的简洁实现)中Sequential类的使用没什么区别。

ModuleList

ModuleList接收一个子模块的列表作为输入,然后也可以类似List那样进行append和extend操作:

net = nn.ModuleList([nn.Linear(784, 256), nn.ReLU()])
net.append(nn.Linear(256, 10)) # # 类似List的append操作
print(net[-1])  # 类似List的索引访问
print(net)
# net(torch.zeros(1, 784)) # 会报NotImplementedError

输出:

Linear(in_features=256, out_features=10, bias=True)
ModuleList(
  (0): Linear(in_features=784, out_features=256, bias=True)
  (1): ReLU()
  (2): Linear(in_features=256, out_features=10, bias=True)
)

既然SequentialModuleList都可以进行列表化构造网络,那二者区别是什么呢。ModuleList仅仅是一个储存各种模块的列表,这些模块之间没有联系也没有顺序(所以不用保证相邻层的输入输出维度匹配),而且没有实现forward功能需要自己实现,所以上面执行net(torch.zeros(1, 784))会报NotImplementedError;而Sequential内的模块需要按照顺序排列,要保证相邻层的输入输出大小相匹配,内部forward功能已经实现。

ModuleList的出现只是让网络定义前向传播时更加灵活,见下面官网的例子。

class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()
        self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(10)])

    def forward(self, x):
        # ModuleList can act as an iterable, or be indexed using ints
        for i, l in enumerate(self.linears):
            x = self.linears[i // 2](x) + l(x)
        return x

另外,ModuleList不同于一般的Python的list,加入到ModuleList里面的所有模块的参数会被自动添加到整个网络中,下面看一个例子对比一下。

class Module_ModuleList(nn.Module):
    def __init__(self):
        super(Module_ModuleList, self).__init__()
        self.linears = nn.ModuleList([nn.Linear(10, 10)])
    
class Module_List(nn.Module):
    def __init__(self):
        super(Module_List, self).__init__()
        self.linears = [nn.Linear(10, 10)]

net1 = Module_ModuleList()
net2 = Module_List()

print("net1:")
for p in net1.parameters():
    print(p.size())

print("net2:")
for p in net2.parameters():
    print(p)

输出:

net1:
torch.Size([10, 10])
torch.Size([10])
net2:

ModuleDict

ModuleDict接收一个子模块的字典作为输入, 然后也可以类似字典那样进行添加访问操作:

net = nn.ModuleDict({
    'linear': nn.Linear(784, 256),
    'act': nn.ReLU(),
})
net['output'] = nn.Linear(256, 10) # 添加
print(net['linear']) # 访问
print(net.output)
print(net)
# net(torch.zeros(1, 784)) # 会报NotImplementedError

输出:

Linear(in_features=784, out_features=256, bias=True)
Linear(in_features=256, out_features=10, bias=True)
ModuleDict(
  (act): ReLU()
  (linear): Linear(in_features=784, out_features=256, bias=True)
  (output): Linear(in_features=256, out_features=10, bias=True)
)

ModuleList一样,ModuleDict实例仅仅是存放了一些模块的字典,并没有定义forward函数需要自己定义。同样,ModuleDict也与Python的Dict有所不同,ModuleDict里的所有模块的参数会被自动添加到整个网络中。

构造复杂的模型

虽然上面介绍的这些类可以使模型构造更加简单,且不需要定义forward函数,但直接继承Module类可以极大地拓展模型构造的灵活性。下面我们构造一个稍微复杂点的网络FancyMLP。在这个网络中,我们通过get_constant函数创建训练中不被迭代的参数,即常数参数。在前向计算中,除了使用创建的常数参数外,我们还使用Tensor的函数和Python的控制流,并多次调用相同的层。

class FancyMLP(nn.Module):
    def __init__(self, **kwargs):
        super(FancyMLP, self).__init__(**kwargs)
        
        self.rand_weight = torch.rand((20, 20), requires_grad=False) # 不可训练参数(常数参数)
        self.linear = nn.Linear(20, 20)

    def forward(self, x):
        x = self.linear(x)
        # 使用创建的常数参数,以及nn.functional中的relu函数和mm函数
        x = nn.functional.relu(torch.mm(x, self.rand_weight.data) + 1)
        
        # 复用全连接层。等价于两个全连接层共享参数
        x = self.linear(x)
        # 控制流,这里我们需要调用item函数来返回标量进行比较
        while x.norm().item() > 1:
            x /= 2
        if x.norm().item() < 0.8:
            x *= 10
        return x.sum()

在这个FancyMLP模型中,我们使用了常数权重rand_weight(注意它不是可训练模型参数)、做了矩阵乘法操作(torch.mm)并重复使用了相同的Linear层。下面我们来测试该模型的前向计算。

X = torch.rand(2, 20)
net = FancyMLP()
print(net)
net(X)

输出:

FancyMLP(
  (linear): Linear(in_features=20, out_features=20, bias=True)
)
tensor(0.8432, grad_fn=<SumBackward0>)

因为FancyMLPSequential类都是Module类的子类,所以我们可以嵌套调用它们。

class NestMLP(nn.Module):
    def __init__(self, **kwargs):
        super(NestMLP, self).__init__(**kwargs)
        self.net = nn.Sequential(nn.Linear(40, 30), nn.ReLU()) 

    def forward(self, x):
        return self.net(x)

net = nn.Sequential(NestMLP(), nn.Linear(30, 20), FancyMLP())

X = torch.rand(2, 40)
print(net)
net(X)

输出:

Sequential(
  (0): NestMLP(
    (net): Sequential(
      (0): Linear(in_features=40, out_features=30, bias=True)
      (1): ReLU()
    )
  )
  (1): Linear(in_features=30, out_features=20, bias=True)
  (2): FancyMLP(
    (linear): Linear(in_features=20, out_features=20, bias=True)
  )
)
tensor(14.4908, grad_fn=<SumBackward0>)

小结

  • 可以通过继承Module类来构造模型。
  • SequentialModuleListModuleDict类都继承自Module类。
  • Sequential不同,ModuleListModuleDict并没有定义一个完整的网络,它们只是将不同的模块存放在一起,需要自己定义forward函数。
  • 虽然Sequential等类可以使模型构造更加简单,但直接继承Module类可以极大地拓展模型构造的灵活性。

注:本节与原书此节有一些不同,原书传送门

模型参数的访问、初始化和共享

在3.3节(线性回归的简洁实现)中,我们通过init模块来初始化模型的参数。我们也介绍了访问模型参数的简单方法。本节将深入讲解如何访问和初始化模型参数,以及如何在多个层之间共享同一份模型参数。

我们先定义一个与上一节中相同的含单隐藏层的多层感知机。我们依然使用默认方式初始化它的参数,并做一次前向计算。与之前不同的是,在这里我们从nn中导入了init模块,它包含了多种模型初始化方法。

import torch
from torch import nn
from torch.nn import init

net = nn.Sequential(nn.Linear(4, 3), nn.ReLU(), nn.Linear(3, 1))  # pytorch已进行默认初始化

print(net)
X = torch.rand(2, 4)
Y = net(X).sum()

输出:

Sequential(
  (0): Linear(in_features=4, out_features=3, bias=True)
  (1): ReLU()
  (2): Linear(in_features=3, out_features=1, bias=True)
)

访问模型参数

回忆一下上一节中提到的Sequential类与Module类的继承关系。对于Sequential实例中含模型参数的层,我们可以通过Module类的parameters()或者named_parameters方法来访问所有参数(以迭代器的形式返回),后者除了返回参数Tensor外还会返回其名字。下面,访问多层感知机net的所有参数:

print(type(net.named_parameters()))
for name, param in net.named_parameters():
    print(name, param.size())

输出:

<class 'generator'>
0.weight torch.Size([3, 4])
0.bias torch.Size([3])
2.weight torch.Size([1, 3])
2.bias torch.Size([1])

可见返回的名字自动加上了层数的索引作为前缀。
我们再来访问net中单层的参数。对于使用Sequential类构造的神经网络,我们可以通过方括号[]来访问网络的任一层。索引0表示隐藏层为Sequential实例最先添加的层。

for name, param in net[0].named_parameters():
    print(name, param.size(), type(param))

输出:

weight torch.Size([3, 4]) <class 'torch.nn.parameter.Parameter'>
bias torch.Size([3]) <class 'torch.nn.parameter.Parameter'>

因为这里是单层的所以没有了层数索引的前缀。另外返回的param的类型为torch.nn.parameter.Parameter,其实这是Tensor的子类,和Tensor不同的是如果一个TensorParameter,那么它会自动被添加到模型的参数列表里,来看下面这个例子。

class MyModel(nn.Module):
    def __init__(self, **kwargs):
        super(MyModel, self).__init__(**kwargs)
        self.weight1 = nn.Parameter(torch.rand(20, 20))
        self.weight2 = torch.rand(20, 20)
    def forward(self, x):
        pass
    
n = MyModel()
for name, param in n.named_parameters():
    print(name)

输出:

weight1

上面的代码中weight1在参数列表中但是weight2却没在参数列表中。

因为ParameterTensor,即Tensor拥有的属性它都有,比如可以根据data来访问参数数值,用grad来访问参数梯度。

weight_0 = list(net[0].parameters())[0]
print(weight_0.data)
print(weight_0.grad) # 反向传播前梯度为None
Y.backward()
print(weight_0.grad)

输出:

tensor([[ 0.2719, -0.0898, -0.2462,  0.0655],
        [-0.4669, -0.2703,  0.3230,  0.2067],
        [-0.2708,  0.1171, -0.0995,  0.3913]])
None
tensor([[-0.2281, -0.0653, -0.1646, -0.2569],
        [-0.1916, -0.0549, -0.1382, -0.2158],
        [ 0.0000,  0.0000,  0.0000,  0.0000]])

初始化模型参数

我们在3.15节(数值稳定性和模型初始化)中提到了PyTorch中nn.Module的模块参数都采取了较为合理的初始化策略(不同类型的layer具体采样的哪一种初始化方法的可参考源代码)。但我们经常需要使用其他方法来初始化权重。PyTorch的init模块里提供了多种预设的初始化方法。在下面的例子中,我们将权重参数初始化成均值为0、标准差为0.01的正态分布随机数,并依然将偏差参数清零。

for name, param in net.named_parameters():
    if 'weight' in name:
        init.normal_(param, mean=0, std=0.01)
        print(name, param.data)

输出:

0.weight tensor([[ 0.0030,  0.0094,  0.0070, -0.0010],
        [ 0.0001,  0.0039,  0.0105, -0.0126],
        [ 0.0105, -0.0135, -0.0047, -0.0006]])
2.weight tensor([[-0.0074,  0.0051,  0.0066]])

下面使用常数来初始化权重参数。

for name, param in net.named_parameters():
    if 'bias' in name:
        init.constant_(param, val=0)
        print(name, param.data)

输出:

0.bias tensor([0., 0., 0.])
2.bias tensor([0.])

自定义初始化方法

有时候我们需要的初始化方法并没有在init模块中提供。这时,可以实现一个初始化方法,从而能够像使用其他初始化方法那样使用它。在这之前我们先来看看PyTorch是怎么实现这些初始化方法的,例如torch.nn.init.normal_

def normal_(tensor, mean=0, std=1):
    with torch.no_grad():
        return tensor.normal_(mean, std)

可以看到这就是一个inplace改变Tensor值的函数,而且这个过程是不记录梯度的。
类似的我们来实现一个自定义的初始化方法。在下面的例子里,我们令权重有一半概率初始化为0,有另一半概率初始化为\([-10,-5]\)\([5,10]\)两个区间里均匀分布的随机数。

def init_weight_(tensor):
    with torch.no_grad():
        tensor.uniform_(-10, 10)
        tensor *= (tensor.abs() >= 5).float()

for name, param in net.named_parameters():
    if 'weight' in name:
        init_weight_(param)
        print(name, param.data)

输出:

0.weight tensor([[ 7.0403,  0.0000, -9.4569,  7.0111],
        [-0.0000, -0.0000,  0.0000,  0.0000],
        [ 9.8063, -0.0000,  0.0000, -9.7993]])
2.weight tensor([[-5.8198,  7.7558, -5.0293]])

此外,参考2.3.2节,我们还可以通过改变这些参数的data来改写模型参数值同时不会影响梯度:

for name, param in net.named_parameters():
    if 'bias' in name:
        param.data += 1
        print(name, param.data)

输出:

0.bias tensor([1., 1., 1.])
2.bias tensor([1.])

共享模型参数

在有些情况下,我们希望在多个层之间共享模型参数。4.1.3节提到了如何共享模型参数: Module类的forward函数里多次调用同一个层。此外,如果我们传入Sequential的模块是同一个Module实例的话参数也是共享的,下面来看一个例子:

linear = nn.Linear(1, 1, bias=False)
net = nn.Sequential(linear, linear) 
print(net)
for name, param in net.named_parameters():
    init.constant_(param, val=3)
    print(name, param.data)

输出:

Sequential(
  (0): Linear(in_features=1, out_features=1, bias=False)
  (1): Linear(in_features=1, out_features=1, bias=False)
)
0.weight tensor([[3.]])

在内存中,这两个线性层其实一个对象:

print(id(net[0]) == id(net[1]))
print(id(net[0].weight) == id(net[1].weight))

输出:

True
True

因为模型参数里包含了梯度,所以在反向传播计算时,这些共享的参数的梯度是累加的:

x = torch.ones(1, 1)
y = net(x).sum()
print(y)
y.backward()
print(net[0].weight.grad) # 单次梯度是3,两次所以就是6

输出:

tensor(9., grad_fn=<SumBackward0>)
tensor([[6.]])

小结

  • 有多种方法来访问、初始化和共享模型参数。
  • 可以自定义初始化方法。

注:本节与原书此节有一些不同,原书传送门

模型参数的延后初始化

由于使用Gluon创建的全连接层的时候不需要指定输入个数。所以当调用initialize函数时,由于隐藏层输入个数依然未知,系统也无法得知该层权重参数的形状。只有在当形状已知的输入X传进网络做前向计算net(X)时,系统才推断出该层的权重参数形状为多少,此时才进行真正的初始化操作。但是使用PyTorch在定义模型的时候就要指定输入的形状,所以也就不存在这个问题了,所以本节略。有兴趣的可以去看看原文,传送门

自定义层

深度学习的一个魅力在于神经网络中各式各样的层,例如全连接层和后面章节中将要介绍的卷积层、池化层与循环层。虽然PyTorch提供了大量常用的层,但有时候我们依然希望自定义层。本节将介绍如何使用Module来自定义层,从而可以被重复调用。

不含模型参数的自定义层

我们先介绍如何定义一个不含模型参数的自定义层。事实上,这和4.1节(模型构造)中介绍的使用Module类构造模型类似。下面的CenteredLayer类通过继承Module类自定义了一个将输入减掉均值后输出的层,并将层的计算定义在了forward函数里。这个层里不含模型参数。

import torch
from torch import nn

class CenteredLayer(nn.Module):
    def __init__(self, **kwargs):
        super(CenteredLayer, self).__init__(**kwargs)
    def forward(self, x):
        return x - x.mean()

我们可以实例化这个层,然后做前向计算。

layer = CenteredLayer()
layer(torch.tensor([1, 2, 3, 4, 5], dtype=torch.float))

输出:

tensor([-2., -1.,  0.,  1.,  2.])

我们也可以用它来构造更复杂的模型。

net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())

下面打印自定义层各个输出的均值。因为均值是浮点数,所以它的值是一个很接近0的数。

y = net(torch.rand(4, 8))
y.mean().item()

输出:

0.0

含模型参数的自定义层

我们还可以自定义含模型参数的自定义层。其中的模型参数可以通过训练学出。

在4.2节(模型参数的访问、初始化和共享)中介绍了Parameter类其实是Tensor的子类,如果一个TensorParameter,那么它会自动被添加到模型的参数列表里。所以在自定义含模型参数的层时,我们应该将参数定义成Parameter,除了像4.2.1节那样直接定义成Parameter类外,还可以使用ParameterListParameterDict分别定义参数的列表和字典。

ParameterList接收一个Parameter实例的列表作为输入然后得到一个参数列表,使用的时候可以用索引来访问某个参数,另外也可以使用appendextend在列表后面新增参数。

class MyDense(nn.Module):
    def __init__(self):
        super(MyDense, self).__init__()
        self.params = nn.ParameterList([nn.Parameter(torch.randn(4, 4)) for i in range(3)])
        self.params.append(nn.Parameter(torch.randn(4, 1)))

    def forward(self, x):
        for i in range(len(self.params)):
            x = torch.mm(x, self.params[i])
        return x
net = MyDense()
print(net)

输出:

MyDense(
  (params): ParameterList(
      (0): Parameter containing: [torch.FloatTensor of size 4x4]
      (1): Parameter containing: [torch.FloatTensor of size 4x4]
      (2): Parameter containing: [torch.FloatTensor of size 4x4]
      (3): Parameter containing: [torch.FloatTensor of size 4x1]
  )
)

ParameterDict接收一个Parameter实例的字典作为输入然后得到一个参数字典,然后可以按照字典的规则使用了。例如使用update()新增参数,使用keys()返回所有键值,使用items()返回所有键值对等等,可参考官方文档

class MyDictDense(nn.Module):
    def __init__(self):
        super(MyDictDense, self).__init__()
        self.params = nn.ParameterDict({
                'linear1': nn.Parameter(torch.randn(4, 4)),
                'linear2': nn.Parameter(torch.randn(4, 1))
        })
        self.params.update({'linear3': nn.Parameter(torch.randn(4, 2))}) # 新增

    def forward(self, x, choice='linear1'):
        return torch.mm(x, self.params[choice])

net = MyDictDense()
print(net)

输出:

MyDictDense(
  (params): ParameterDict(
      (linear1): Parameter containing: [torch.FloatTensor of size 4x4]
      (linear2): Parameter containing: [torch.FloatTensor of size 4x1]
      (linear3): Parameter containing: [torch.FloatTensor of size 4x2]
  )
)

这样就可以根据传入的键值来进行不同的前向传播:

x = torch.ones(1, 4)
print(net(x, 'linear1'))
print(net(x, 'linear2'))
print(net(x, 'linear3'))

输出:

tensor([[1.5082, 1.5574, 2.1651, 1.2409]], grad_fn=<MmBackward>)
tensor([[-0.8783]], grad_fn=<MmBackward>)
tensor([[ 2.2193, -1.6539]], grad_fn=<MmBackward>)

我们也可以使用自定义层构造模型。它和PyTorch的其他层在使用上很类似。

net = nn.Sequential(
    MyDictDense(),
    MyListDense(),
)
print(net)
print(net(x))

输出:

Sequential(
  (0): MyDictDense(
    (params): ParameterDict(
        (linear1): Parameter containing: [torch.FloatTensor of size 4x4]
        (linear2): Parameter containing: [torch.FloatTensor of size 4x1]
        (linear3): Parameter containing: [torch.FloatTensor of size 4x2]
    )
  )
  (1): MyListDense(
    (params): ParameterList(
        (0): Parameter containing: [torch.FloatTensor of size 4x4]
        (1): Parameter containing: [torch.FloatTensor of size 4x4]
        (2): Parameter containing: [torch.FloatTensor of size 4x4]
        (3): Parameter containing: [torch.FloatTensor of size 4x1]
    )
  )
)
tensor([[-101.2394]], grad_fn=<MmBackward>)

小结

  • 可以通过Module类自定义神经网络中的层,从而可以被重复调用。

注:本节与原书此节有一些不同,原书传送门

读取和存储

到目前为止,我们介绍了如何处理数据以及如何构建、训练和测试深度学习模型。然而在实际中,我们有时需要把训练好的模型部署到很多不同的设备。在这种情况下,我们可以把内存中训练好的模型参数存储在硬盘上供后续读取使用。

读写Tensor

我们可以直接使用save函数和load函数分别存储和读取Tensorsave使用Python的pickle实用程序将对象进行序列化,然后将序列化的对象保存到disk,使用save可以保存各种对象,包括模型、张量和字典等。而load使用pickle unpickle工具将pickle的对象文件反序列化为内存。

下面的例子创建了Tensor变量x,并将其存在文件名同为x.pt的文件里。

import torch
from torch import nn

x = torch.ones(3)
torch.save(x, 'x.pt')

然后我们将数据从存储的文件读回内存。

x2 = torch.load('x.pt')
x2

输出:

tensor([1., 1., 1.])

我们还可以存储一个Tensor列表并读回内存。

y = torch.zeros(4)
torch.save([x, y], 'xy.pt')
xy_list = torch.load('xy.pt')
xy_list

输出:

[tensor([1., 1., 1.]), tensor([0., 0., 0., 0.])]

存储并读取一个从字符串映射到Tensor的字典。

torch.save({'x': x, 'y': y}, 'xy_dict.pt')
xy = torch.load('xy_dict.pt')
xy

输出:

{'x': tensor([1., 1., 1.]), 'y': tensor([0., 0., 0., 0.])}

读写模型

state_dict

在PyTorch中,Module的可学习参数(即权重和偏差),模块模型包含在参数中(通过model.parameters()访问)。state_dict是一个从参数名称隐射到参数Tesnor的字典对象。

class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.hidden = nn.Linear(3, 2)
        self.act = nn.ReLU()
        self.output = nn.Linear(2, 1)

    def forward(self, x):
        a = self.act(self.hidden(x))
        return self.output(a)

net = MLP()
net.state_dict()

输出:

OrderedDict([('hidden.weight', tensor([[ 0.2448,  0.1856, -0.5678],
                      [ 0.2030, -0.2073, -0.0104]])),
             ('hidden.bias', tensor([-0.3117, -0.4232])),
             ('output.weight', tensor([[-0.4556,  0.4084]])),
             ('output.bias', tensor([-0.3573]))])

注意,只有具有可学习参数的层(卷积层、线性层等)才有state_dict中的条目。优化器(optim)也有一个state_dict,其中包含关于优化器状态以及所使用的超参数的信息。

optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
optimizer.state_dict()

输出:

{'param_groups': [{'dampening': 0,
   'lr': 0.001,
   'momentum': 0.9,
   'nesterov': False,
   'params': [4736167728, 4736166648, 4736167368, 4736165352],
   'weight_decay': 0}],
 'state': {}}

保存和加载模型

PyTorch中保存和加载训练模型有两种常见的方法:

  1. 保存和加载state_dict(推荐方式)

保存:

torch.save(model.state_dict(), PATH) # 推荐的文件后缀名是pt或pth

加载:

model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH))
  1. 保存和加载整个模型

保存:

torch.save(model, PATH)

加载:

model = torch.load(PATH)

我们采用推荐的方法一来实验一下:

X = torch.randn(2, 3)
Y = net(X)

PATH = "./net.pt"
torch.save(net.state_dict(), PATH)

net2 = MLP()
net2.load_state_dict(torch.load(PATH))
Y2 = net2(X)
Y2 == Y

输出:

tensor([[1],
        [1]], dtype=torch.uint8)

因为这netnet2都有同样的模型参数,那么对同一个输入X的计算结果将会是一样的。上面的输出也验证了这一点。

此外,还有一些其他使用场景,例如GPU与CPU之间的模型保存与读取、使用多块GPU的模型的存储等等,使用的时候可以参考官方文档

小结

  • 通过save函数和load函数可以很方便地读写Tensor
  • 通过save函数和load_state_dict函数可以很方便地读写模型的参数。

注:本节与原书此节有一些不同,原书传送门

GPU计算

到目前为止,我们一直在使用CPU计算。对复杂的神经网络和大规模的数据来说,使用CPU来计算可能不够高效。在本节中,我们将介绍如何使用单块NVIDIA GPU来计算。所以需要确保已经安装好了PyTorch GPU版本。准备工作都完成后,下面就可以通过nvidia-smi命令来查看显卡信息了。

!nvidia-smi  # 对Linux/macOS用户有效

输出:

Sun Mar 17 14:59:57 2019       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 390.48                 Driver Version: 390.48                    |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce GTX 1050    Off  | 00000000:01:00.0 Off |                  N/A |
| 20%   36C    P5    N/A /  75W |   1223MiB /  2000MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0      1235      G   /usr/lib/xorg/Xorg                           434MiB |
|    0      2095      G   compiz                                       163MiB |
|    0      2660      G   /opt/teamviewer/tv_bin/TeamViewer              5MiB |
|    0      4166      G   /proc/self/exe                               416MiB |
|    0     13274      C   /home/tss/anaconda3/bin/python               191MiB |
+-----------------------------------------------------------------------------+

可以看到我这里只有一块GTX 1050,显存一共只有2000M(太惨了

推荐阅读