首页 > 技术文章 > SPOJ-7001 VLATTICE 莫比乌斯反演定理

zhsl 2013-08-19 23:05 原文

  题目链接:http://www.spoj.com/problems/VLATTICE/

  题意:求gcd(x,y,z)=1,1<=x,y,z<=n,的个数。

  开始做的时候枚举gcd(x,y),然后求z与gcd(x,y)互素的个数个数,O(n*sqrt(n))赌赌RP,然后TLE了。。。

  后来才知道要用到莫比乌斯反演定理:  

    已知 f(n) = sigma(d|n, g(d))

    那么 g(n) = sigma(d|n, mu(d)*f(n/d))

  还有另一种形式更常用:

    在某一范围内,已知 f(n) = sigma(n|d, g(d))

    那么 g(n) = sigma(n|d, mu(d/n)*f(d))

  这个题目用到了第二种形式,设g(n)为gcd(x,y,z)=n的个数,f(n)为n | g(i*n)的个数,那么有f(n)=sigma(n|d,g(d)),那么g(n)=sigma(n|d, mu(d/n)*f(d)),我们要求g(1),则g(1)=sigma(n|d, mu(d)*f(d)),其中mu(n)是莫比乌斯函数:

            

  上面的公式忘打括号了,(-1)^k...

  因为f(d)=(n/d)*(n/d)*(n/d),所以g(1)=sigma( mu(d)*(n/d)*(n/d)*(n/d) ).

  然后用线性筛法在O(n)的时间内求出mu(n)就可以了。。

 1 //STATUS:C++_AC_3.22S_14MB
 2 #include <functional>
 3 #include <algorithm>
 4 #include <iostream>
 5 //#include <ext/rope>
 6 #include <fstream>
 7 #include <sstream>
 8 #include <iomanip>
 9 #include <numeric>
10 #include <cstring>
11 #include <cassert>
12 #include <cstdio>
13 #include <string>
14 #include <vector>
15 #include <bitset>
16 #include <queue>
17 #include <stack>
18 #include <cmath>
19 #include <ctime>
20 #include <list>
21 #include <set>
22 #include <map>
23 using namespace std;
24 //#pragma comment(linker,"/STACK:102400000,102400000")
25 //using namespace __gnu_cxx;
26 //define
27 #define pii pair<int,int>
28 #define mem(a,b) memset(a,b,sizeof(a))
29 #define lson l,mid,rt<<1
30 #define rson mid+1,r,rt<<1|1
31 #define PI acos(-1.0)
32 //typedef
33 typedef long long LL;
34 typedef unsigned long long ULL;
35 //const
36 const int N=1000010;
37 const int INF=0x3f3f3f3f;
38 const int MOD=100000,STA=8000010;
39 const LL LNF=1LL<<60;
40 const double EPS=1e-8;
41 const double OO=1e15;
42 const int dx[4]={-1,0,1,0};
43 const int dy[4]={0,1,0,-1};
44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
45 //Daily Use ...
46 inline int sign(double x){return (x>EPS)-(x<-EPS);}
47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
50 template<class T> inline T Min(T a,T b){return a<b?a:b;}
51 template<class T> inline T Max(T a,T b){return a>b?a:b;}
52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
56 //End
57 int isprime[N],mu[N],prime[N];
58 int cnt;
59 void Mobius(int n)
60 {
61     int i,j;
62     //Init phi[N],prime[N],全局变量初始为0
63     cnt=0;mu[1]=1;
64     for(i=2;i<=n;i++){
65         if(!isprime[i]){
66             prime[cnt++]=i;  //prime[i]=1;为素数表
67             mu[i]=-1;
68         }
69         for(j=0;j<cnt && i*prime[j]<=n;j++){
70             isprime[i*prime[j]]=1;
71             if(i%prime[j])
72                 mu[i*prime[j]]=-mu[i];
73             else {mu[i*prime[j]]=0;break;}
74         }
75     }
76 }
77 
78 int T,n;
79 
80 int main(){
81  //   freopen("in.txt","r",stdin);
82     int i,j,t;
83     LL ans;
84     Mobius(1000000);
85     scanf("%d",&T);
86     while(T--)
87     {
88         scanf("%d",&n);
89         ans=3;
90         for(i=1;i<=n;i++)ans+=(LL)mu[i]*(n/i)*(n/i)*((n/i)+3);
91         printf("%lld\n",ans);
92     }
93     return 0;
94 }

 

推荐阅读