首页 > 技术文章 > 关于连续性的专题讨论

ly142857 2014-05-04 13:06 原文

$\bf命题:$设$f(x)\in C(a,b)$,且在有理点处$(稠密子集上)$取值为$A$,则$f\left( x \right) \equiv A$

1

$\bf命题:$设$f(x)\in C[a,b]$,且对任意$x\in [a,b]$,存在$y\in [a,b]$,使得$\left| {f\left( y \right)} \right| \le \frac{1}{2}\left| {f\left( x \right)} \right|$,则$f(x)$在$[a,b]$中有零点

1

$\bf命题:$设$f\left( x \right) \in C\left[ {0,1} \right]$,且$f\left( 0 \right) = f\left( 1 \right)$

   (1)证明:存在${x_0} \in \left[ {0,\frac{1}{2}} \right]$,使得$f\left( {{x_0}} \right) = f\left( {{x_0} + \frac{1}{2}} \right)$

   (2)试推测:对任何的自然数$n$,是否存在${x_0} \in [0,\frac{{n - 1}}{n}]$,使得$f\left( {{x_0}} \right) = f\left( {{x_0} + \frac{1}{n}} \right)$,并证明你的结论

1

$\bf命题:$设$f(x)$在$x=0$处连续,且$\lim \limits_{x \to \begin{array}{*{20}{c}}0\end{array}} \frac{{f\left( {2x} \right) - f\left( x \right)}}{x} = A$,证明:$f'\left( 0 \right) = A$

1

$\bf命题:$设$f(x)$在$\left( { - \infty , + \infty } \right)$上连续,若$\lim \limits_{x \to \begin{array}{*{20}{c}}\infty \end{array}} f\left( x \right) = + \infty $,证明:

   (1)$f(x)$在$\left( { - \infty , + \infty } \right)$上有最小值$a$

   (2)若$f(a)>a$,则$f(f(x))$在$\left( { - \infty , + \infty } \right)$上至少两点取到最小值

$\bf命题:$设$f(x)$在$[a,b]$上具有介值性,且$(a,b)$内可导,$\left| {f'\left( x \right)} \right| \leqslant k,x\in (a,b)$,证明:$f(x)$在$a$处右连续,在$b$处左连续

1

$\bf命题:$

$(04大连理工)$设$f(x)$在$[a,b]$上连续,对$x\in[a,b]$,定义$m\left( x \right) = \mathop {\inf }\limits_{a \leqslant t \leqslant x} f\left( t \right)$,证明:$m(x)$在$[a,b]$上连续

 

推荐阅读