首页 > 技术文章 > 线性代数之——A 的 LU 分解

seniusen 2018-11-15 13:16 原文

1. A = LU

之前在消元的过程中,我们看到可以将矩阵 \(A\) 变成一个上三角矩阵 \(U\)\(U\) 的对角线上就是主元。下面我们将这个过程反过来,通一个下三角矩阵 \(L\) 我们可以从 \(U\) 得到 \(A\)\(L\) 中的元素也就是乘数 \(l_{ij}\)

如果有一个 3*3 的矩阵,假设不需要进行行交换,那我们需要三个消元矩阵 \(E_{21}, E_{31}, E_{32}\) 来分别使矩阵 \(A\) 的 (2, 1)、(3, 1) 和 (3, 2) 位置为零,然后我们就有

乘数 \(l_{ij}\) 正好就是 \(L\)\((i, j)\) 处的元素。因为当我们计算 \(U\) 的第三行的时候,实际上是用 \(A\) 的第三行减去 \(U\) 的前两行的一些倍数。

因此有

下面看一个特殊的例子

如果 \(A\) 的某一行以 0 开始,说明该位置不需要进行消元,也即 \(L\) 中对应位置的元素为 0。

如果 \(A\) 的某一列以 0 开始,该位置元素在消元过程始终不会改变,也即 \(U\) 中对应位置的元素为 0。

由于 \(L\) 的对角线上都是 1,而 \(U\) 的对角线上为主元,因此,这是不对称的。我们可以进一步将 \(U\) 进行分解,使得 \(U\) 的对角线上元素也都为 1。

这时候,\(A\) 的分解就变成了 \(A = LU = LDU\),其中 \(D\) 是一个对角矩阵, \(L\) 是一个下三角矩阵, \(U\) 是一个上三角矩阵。

当我们从左边的 \(A\) 得到 \(L\)\(U\) 后,我们就对右边的 \(b\) 进行同样的消元过程得到 \(Lc = b\),然后再通过回带 \(Ux=c\) 求出方程组的解。

2. 消元过程的计算复杂度

假设我们有一个 \(n*n\) 的矩阵,首先我们要将第一列主元以下的元素都变成 \(0\)。这时候,每一个元素变成 \(0\) 我们都需要 \(n\) 次乘法和 \(n\) 次减法,总共有 \(n-1\) 个元素需要变成 \(0\),总的乘法次数为 \(n(n-1)\),近似为 \(n^2\)。然后,我们要依次将后面列的主元下面的元素变成 \(0\),需要的总的乘法次数为 \(n^2+(n-1)^2+\cdots + 2 + 1 \approx \frac{1}{3}n^3\)

也就是说对左边的 \(A\) 消元要进行 \(\frac{1}{3}n^3\) 次的乘法操作和 \(\frac{1}{3}n^3\) 次的加法操作。

再来看右边对 \(b\) 进行消元,首先我们需要将 \(b_2, b_3 \cdots b_n\) 都减去 \(b_1\),需要 \(n-1\) 次操作,往后我们依次需要 \(n-2, n-3 \cdots 1\) 次操作。回带的时候,求解最后一个方程的时候,我们只需要进行 1 次操作,依次往上我们需要 \(2, 3 \cdots n\) 次操作。因此,求解的过程总共需要 \(n^2\) 次的乘法操作和 \(n^2\) 次的加法操作

3. 转置和置换矩阵

\(A\) 的转置矩阵称为 \(A^T\),其中 \(A^T\) 的列就是 \(A\) 的行,也即 \((A^T)_{ij} = A_{ji}\)

\[(A+B)^T = A^T + B^T \]

\[(AB)^T = B^TA^T \]

假设 \(B\) 是一个向量 \(x\),那么对 \((Ax)^T = x^TA^T\) 的理解就是:\(Ax\) 是对 \(A\) 的列的线性组合,\(x^TA^T\) 则是对 \(A^T\) 的行的线性组合,\(A\) 的列和 \(A^T\) 的行是一样的,所以线性组合后是一样的结果。

如果 \(B\) 有多列的话,我们就很容易得到

同理,针对更多的矩阵,我们也有

\[(ABC)^T = C^TB^TA^T \]

\[(A^{-1})^T = (A^T)^{-1} \]

\[AA^{-1} = I \to (AA^{-1})^T = I \to (A^{-1})^TA^T = I \to (A^{-1})^T = (A^T)^{-1} \]

转置形式的内积和外积

对称矩阵的转置等于它本身,也就是 \(A^T = A\)。而且,一个对称矩阵的逆矩阵也是对称的。

\[(A^{-1})^T = (A^T)^{-1} = A^{-1} \]

对于一个任意的矩阵 \(R\),可以是矩形的,\(R^TR\)\(RR^T\) 都是一个对称的方阵。

\[(R^TR)^T = R^T(R^T)^T = R^TR \]

\(A=A^T\) 时,如果没有行交换,那么有 \(A = LDU = LDL^T\),此时 \(U\) 变成了 \(L^T\)

置换矩阵 \(P\) 每行每列都只有一个 1,而且 \(P^T\)\(PP^T\) 和任意两个置换矩阵的乘积 \(P_1P_2\) 都还是置换矩阵。此外,所有的置换矩阵都有 \(P^T=P^{-1}\)

\(n\) 阶的情况下,置换矩阵的总的个数为 \(n!\)。例如 2 阶置换矩阵只有 2 个,3 阶置换矩阵有 6 个。

如果在需要行交换的情况下,我们可以先引入一个置换矩阵 \(P\) 使矩阵 \(A\) 的行有正确的顺序,然后再进行消元,这样的话我们就有

\[PA=LU \]

也可以进行消元,然后再用一个矩阵 \(P_1\) 来让主元有一个正确的顺序,这样的话我们就有

\[A=L_1P_1U_1 \]

如果 \(A\) 是可逆的,置换矩阵 \(P\) 将会使它的行有一个正确的顺序然后分解成 \(PA=LU\) 的形式。

获取更多精彩,请关注「seniusen」!

推荐阅读