首页 > 技术文章 > 互联网找的e是无理数的初等证明

strongdady 2020-07-23 18:41 原文

e的两种计算方式
\(e=lim_{n \to \infty}(1+\frac{1}{n})^n\)
\(e=\sum_{n=0}^{+\infty}\frac{1}{n!}\)
\(即,e=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}\frac{1}{3!}+\cdot\cdot\)
\(所以2<e<1+1+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\cdot\cdot\cdot\)=3
\(即2<e<3\)
\(可知e不是整数,用反证法,假设e是有理数,即e=\frac{p}{q},且q不是1,即q\geqslant2,则\)
\(q!\cdot e=q!\sum_{n=0}^{+\infty}\frac{1}{n!}\quad\quad\quad(1)\)
\(\quad\quad\quad=\sum_{n=0}^{+\infty}q!\frac{1}{n!}\)
\(\quad\quad\quad=\sum_{n=0}^{q}q!\frac{1}{n!}+\sum_{n=q+1}^{+\infty}q!\frac{1}{n!}\)
\(上式的右侧第二项为:\\\)
\(\sum_{n=q+1}^{+\infty}q!\frac{1}{n!}\)
\(\quad=\sum_{n=q+1}^{+\infty}\frac{1}{q+1}+\frac{1}{q+1}\frac{1}{q+2}+\cdot\cdot\)
\(\quad\leqslant\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\cdot\cdot<=\frac{1}{2}\)
\((1)式的左侧\quad q!\cdot e=q!\frac{p}{q}=(q-1)!p,是整数,而右侧有分数,显然矛盾\)

推荐阅读