首页 > 技术文章 > 单位根反演

lhm- 2020-08-02 21:34 原文

单位根

\[\large\begin{aligned} &\omega_n^k=e^{\frac{2\pi ik}{n}}=\cos\frac{2πk}{n}+i\sin\frac{2πk}{n} \\ &\omega_{n}^{n}=1 \\ &\omega_{2n}^{2k}=\omega_n^k \\ &\omega_{n}^{k+\frac{n}{2}}=-\omega_n^k \\ &\sum_{i=1}^{n-1} \omega_n^i = 0 \end{aligned} \]

单位根反演

\[\large [n\mid k]=\frac{1}{n}\sum_{i=0}^{n-1}\omega_n^{ik} \]

\(n\mid k\) 时,得

\[\large \frac{1}{n}\sum_{i=0}^{n-1}\omega_n^{ik}=\frac{1}{n}\sum_{i=0}^{n-1}\omega_n^n=1 \]

\(n\nmid k\) 时,得

\[\large \frac{1}{n}\sum_{i=0}^{n-1}\omega_{n}^{ik}=\frac{1}{n}\omega_n^{0}\frac{1-\omega_n^{nk}}{1-\omega_n^{k}}=0 \]

可以用来求多项式某个倍数的系数和:

\[\large\begin{aligned} &\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} [x^{ik}] f(x) \\ =&\sum_{i=0}^n [x^{i}] f(x)[k \mid i] \\ =&\sum_{i=0}^n [x^{i}] f(x)\frac{1}{k}\sum_{j=0}^{k-1}\omega_k^{ij} \\ =&\frac{1}{k} \sum_{j=0}^{k-1} \sum_{i=0}^n [x^{i}] f(x)(\omega_k^j)^i \\ =&\frac{1}{k} \sum_{j=0}^{k-1} f(\omega_k^j) \\ \end{aligned} \]

证明 \(IDFT\) 正确性:

\[\large\begin{aligned} \ [x^k] \widehat{f}(x) &= \sum_{i=0}^{n-1} \omega_n^{-ik}f(\omega_n^i) \\ &= \sum_{i=0}^{n-1} \omega_n^{-ik}\sum_{j=0}^{n-1} \omega_n^{ij} [x^j] f(x)\\ &= \sum_{j=0}^{n-1} [x^j] f(x) \sum_{i=0}^{n-1} \omega_n^{i(j-k)} \\ &= n\sum_{j=0}^{n-1} [x^j] f(x) [n\mid (j-k)] \\ &= n[x^k] f(x) \\ \ [x^k] \widehat{f}(x) &= \sum_{i=0}^{n-1} \omega_n^{ik}f(\omega_n^i) \\ &= \sum_{i=0}^{n-1} \omega_n^{ik}\sum_{j=0}^{n-1} \omega_n^{ij} [x^j] f(x)\\ &= \sum_{j=0}^{n-1} [x^j] f(x) \sum_{i=0}^{n-1} \omega_n^{i(j+k)} \\ &= [x^0] f(x) \sum_{i=0}^{n-1} \omega_n^{ik} +\sum_{j=1}^{n-1} [x^{n-j}] f(x) \sum_{i=0}^{n-1} \omega_n^{i(k-j)} \\ &= n [x^0] f(x)[n \mid k] + n \sum_{j=1}^{n-1} [x^{n-j}] f(x) [n \mid (k-j)] \\ \end{aligned} \]

推荐阅读