首页 > 技术文章 > 【题解】征途 SDOI 2016 BZOJ 4518

mlystdcall 2017-04-21 15:30 原文

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4518

首先推式子,我们用$x_i$表示第$i$段的路程,$sum$表示总路程,根据方差和平均数的定义,有:

$ \Large sum = \sum\limits_{i=1}^{m}{x_i} \\ $
$ \Large \bar{x} = \frac{sum}{m} \\ $
$ \Large ans = \frac{ \sum\limits_{i=1}^{m}{ (x_i - \bar{x})^2 } }{m} \cdot m^2 \\ $

然后我们把式子展开化简一番,就有了:

$ \Large ans = ( \sum\limits_{i=1}^{m}{ (x_i - \frac{sum}{m})^2 } ) \cdot m \\ $
$ \Large ans = ( \sum\limits_{i=1}^{m}{ \frac{ (m \cdot x_i - sum)^2 }{m^2} } ) \cdot m \\ $
$ \Large ans = \sum\limits_{i=1}^{m}{ \frac{ m^2 \cdot x_i^2 - 2 \cdot m \cdot x_i \cdot sum + sum^2 }{m} } \\ $
$ \Large ans = sum^2 + \sum\limits_{i=1}^{m}{ (m \cdot x_i^2 - 2 \cdot x_i \cdot sum) } \\ $

于是我们的目标就是最小化这个式子,看上去很像个dp?没错。

先抛开前面的常数$sum^2$,我们下面的dp过程中计算的是后面那个求和式子的最小值。

设$f(i,j)$表示我们把前$j$个数划分成了$i$段的最小值,$dist(i,j)$表示从第$i$个数到第$j$个数的和,用$d$数组存放前缀和,于是有:

$ \Large dist(i,j) = d_j - d_{i-1} \\ $
$ \Large f(i,j) = f(i-1,k) + m \cdot dist(k+1,j)^2 - 2 \cdot dist(k+1,j) \cdot sum \\ $

对这个式子展开并化简,得到:

$ \Large f(i,j) = f(i-1,k) + m \cdot (d_j - d_k)^2 - 2 \cdot (d_j - d_k) \cdot sum \\ $
$ \Large f(i,j) = f(i-1,k) + m \cdot (d_j^2 - 2 \cdot d_j \cdot d_k + d_k^2 ) - 2 \cdot d_j \cdot sum + 2 \cdot d_k \cdot sum \\ $

再整理一下式子,我们就可以进行斜率优化dp了,下面的$x$和$y$表示状态对应的点的横纵坐标,$k$表示状态对应的斜率,$b$表示状态对应的常数项。

$ \Large b = m \cdot d_j^2 - 2 \cdot d_j \cdot sum \\ $
$ \Large y = f(i-1,k) + m \cdot d_k^2 + 2 \cdot d_k \cdot sum \\ $
$ \Large x = d_k \\ $
$ \Large k = 2 \cdot m \cdot d_j \\ $
$ \Large f(i,j) = y - x \cdot k + b \\ $

我们的任务是最小化$f(i,j)$,且$x,y,k$是递增的,于是就用单调队列维护一个下凸壳就好啦。

代码:

 1 #include <cstring>
 2 #include <cstdio>
 3 #include <algorithm>
 4 
 5 using namespace std;
 6 typedef long long ll;
 7 const double EPS = 1e-6;
 8 const int MAXN = 3010;
 9 
10 struct Point {
11     ll x, y;
12     Point( ll x = 0, ll y = 0 ):x(x),y(y){}
13     Point operator-( const Point &rhs ) const {
14         return Point(x-rhs.x, y-rhs.y);
15     }
16 };
17 typedef Point Vector;
18 double Cross( Vector v, Vector w ) {
19     return (double)v.x*w.y - (double)v.y*w.x;
20 }
21 
22 namespace MonoQ { // 维护下凸壳的单调队列
23     Point P[MAXN];
24     int head, tail;
25     void clear() {
26         head = tail = 0;
27     }
28     void insert( Point Q ) { // 插入一个点
29         while( tail-head >= 2 && Cross(P[tail-1]-P[tail-2], Q-P[tail-1]) < EPS ) --tail;
30         P[tail++] = Q;
31     }
32     Point query( ll k ) { // 根据斜率查询最小值
33         while( tail-head >= 2 && P[head].y - P[head].x*k > P[head+1].y - P[head+1].x*k ) ++head;
34         return P[head];
35     }
36 }
37 
38 ll n, m, d[MAXN] = {0};
39 
40 ll f[2][MAXN];
41 ll getx( int i ) { // 这四个函数用于获取一个状态对应的几何信息
42     return d[i];
43 }
44 ll gety( int cur, int i ) {
45     return f[cur][i] + m*d[i]*d[i] + 2*d[i]*d[n];
46 }
47 ll getb( int i ) {
48     return m*d[i]*d[i] - 2*d[i]*d[n];
49 }
50 ll getk( int i ) {
51     return 2*m*d[i];
52 }
53 void solve() {
54     int cur = 0;
55     memset( f, 0x3f, sizeof(f) );
56     f[cur][0] = 0;
57     for( int i = 1; i <= m; ++i ) {
58         cur ^= 1;
59         MonoQ::clear();
60         MonoQ::insert( Point(getx(i-1), gety(cur^1, i-1)) );
61         for( int j = i; j <= n; ++j ) {
62             Point P = MonoQ::query(getk(j));
63             f[cur][j] = P.y - P.x*getk(j) + getb(j);
64             MonoQ::insert( Point(getx(j), gety(cur^1, j)) );
65         }
66     }
67     printf( "%lld\n", f[cur][n] + d[n]*d[n] ); // 别忘了最后加上sum^2
68 }
69 
70 int main() {
71     scanf( "%lld%lld", &n, &m );
72     for( int i = 1; i <= n; ++i ) {
73         scanf( "%lld", d+i );
74         d[i] += d[i-1]; // 前缀和
75     }
76     solve();
77     return 0;
78 }

 

推荐阅读