首页 > 技术文章 > 关于一致连续的专题讨论

ly142857 2014-05-03 20:09 原文

$\bf{命题:}$设$f(x)$在$(a,b)$上连续,则$f(x)$在$(a,b)$上一致连续的充要条件是:$\lim \limits_{x \to \begin{array}{*{20}{c}}{{a^ + }}\end{array}} f\left( x \right)$与$\lim \limits_{x \to \begin{array}{*{20}{c}}{{b^ -}}\end{array}} f\left( x \right)$均存在且有限

1

$\bf{命题:}$设$f(x)$在$\left[ {a, + \infty } \right)$上连续,若$\lim \limits_{x \to \begin{array}{*{20}{c}}{ + \infty }\end{array}} f\left( x \right)$存在且有限,则$f(x)$在$\left[ {a, + \infty } \right)$上一致连续

1

$\bf{命题:}$设$f(x)$在$\left( {a,b} \right)$上可导且导函数有界,则$f(x)$在$\left( {a,b} \right)$上一致连续

1

$\bf{命题:}$(1)设$f(x)$在$\left[ {a, + \infty } \right)$上可导,且$\lim \limits_{x \to \begin{array}{*{20}{c}}{ + \infty }\end{array}} f'\left( x \right) = A $,则$f(x)$在$\left[ {a, + \infty } \right)$上一致连续

1

(2)设$f(x)$在$\left[ {a, + \infty } \right)$上可导,且$\lim \limits_{x \to \begin{array}{*{20}{c}}{ + \infty }\end{array}} f'\left( x \right) ={ + \infty }$,则$f(x)$在$\left[ {a, + \infty } \right)$上非一致连续

1

$\bf{命题:}$设$f(x)$在有限区间$\left( {a,b} \right)$上可导,且$\lim \limits_{x \to \begin{array}{*{20}{c}}{{a^ + }}\end{array}} f'\left( x \right)$与$ \lim\limits_{x \to \begin{array}{*{20}{c}}{{b^ - }}\end{array}} f'\left( x \right)$均存在,则$f(x)$在$\left( {a,b} \right)$上一致连续

1

$\bf{命题:}$设$f(x)$定义在开区间$(a,b)$上,若对任意的$c\in (a,b)$都有$\lim \limits_{x \to c} f\left( x \right)$存在,且$\lim \limits_{x \to \begin{array}{*{20}{c}}{{a^ + }}\end{array}} f\left( x \right)$与$ \lim\limits_{x \to \begin{array}{*{20}{c}}{{b^ - }}\end{array}} f\left( x \right)$也存在,则$f(x)$在$(a,b)$上有界

1

$\bf{命题:}$设$f(x)$在$<a,b>$上一致连续,$\forall x \in  < a,b > ,f\left( x \right) \in  < c,d > $,且$g(y)$在$<c,d>$上一致连续,则$F\left( x \right) = g\left( {f\left( x \right)} \right)$在$<a,b>$上一致连续

1

$\bf{命题:}$设$f(x)$在$\left[ {a, + \infty } \right)$上一致连续,$\varphi \left( x \right)$在$\left[ {a, + \infty } \right)$上连续,且$\lim \limits_{x \to  + \infty } \left[ {f\left( x \right) - \varphi \left( x \right)} \right] = 0$,则$\varphi \left( x \right)$在$\left[ {a, + \infty } \right)$上一致连续

1

$\bf{命题:}$设$f(x)$在$R$上连续,且$\lim \limits_{x \to \infty } f\left( x \right)$存在,则

   (1)$f(x)$在$R$上有界

   (2)$f(x)$在$R$上能取得最大值或最小值

   (3)$f(x)$在$R$上一致连续

1

$\bf{命题:}$设$f(x)$在$(0,+ \infty )$上可导,且$\sqrt x f'\left( x \right)$在$(0,+ \infty )$上有界,则

   (1)$f(x)$在$(0,+ \infty )$一致连续

   (2)$f\left( {{0^ + }} \right) = \lim \limits_{x \to \begin{array}{*{20}{c}}{{0^ + }}\end{array}} f\left( x \right)$

   (3)若将条件“$\sqrt x f'\left( x \right)$在$(0,+ \infty )$上有界”改为“$\lim \limits_{x \to \begin{array}{*{20}{c}}{{0^ + }}\end{array}} \sqrt x f'\left( x \right)$和$\lim \limits_{x \to  + \infty } \sqrt x f'\left( x \right)$都存在”,试问:还能否推出$f(x)$在$(0,+ \infty )$一致连续,如果能请给出证明,否则举出反例

参考答案

$\bf{命题:}$(1)证明:$f\left( x \right) = \sqrt x $在$(0,+ \infty )$上一致连续

(2)讨论$f\left( x \right) = \sqrt x $在$(0,+ \infty )$上是否$\bf{Lipschitz}$连续,即是否存在常数$L>0$,使得\[\left| {f\left( x \right) - f\left( y \right)} \right| \le L\left| {x - y} \right|,\forall x,y \in (0, + \infty )\]

1

$\bf{命题:}$设$f\left( x \right) = {x^\alpha }$,证明:当$0 < \alpha  \le 1$时,$f(x)$在$(0,+ \infty )$上一致连续;当$\alpha >1$时,$f(x)$在$(0,+ \infty )$上非一致连续

1

$\bf{命题:}$设$f(x)$在$\left[ {a, + \infty } \right)\left( {a > 0} \right)$上满足$\bf{Lipschitz}$条件,即存在$M>0$,使得对任意的$x,y\in \left[ {a, + \infty } \right) $,有\[\left| {f\left( x \right) - f\left( y \right)} \right| \le M\left| {x - y} \right|\]则$\frac{{f\left( x \right)}}{x}$在$\left[ {a, + \infty } \right)$上一致连续

1

$\bf{命题:}$设$f(x)$在有限区间$I$上有定义,则$f(x)$在$I$上一致连续的充要条件是:对任意的$Cauchy$列$\left\{ {{x_n}} \right\} \subset I$,$\left\{ {f\left( {{x_n}} \right)} \right\}$也是$Cauchy$列

1

$\bf{命题:}$

$\bf{命题:}$设$f(x)$在$\left( { - \infty , + \infty } \right)$上一致连续,则存在非负实数$A,B$,使得对任意$x \in \left( { - \infty , + \infty } \right)$,有$\left| {f\left( x \right)} \right| \le A\left| x \right| + B$

参考答案

 

 

 

 




 

 

 

 

 




 

 

 

 

 





推荐阅读