首页 > 技术文章 > Fokker-Planck方程

immcrr 2019-12-08 00:38 原文

Fokker-Planck方程

对于一般随机过程有条件概率公式

\[P(y_n,t_n;y_{n-1},t_{n-1};\cdots;y_1,t_1)=P(y_n,t_n|y_{n-1},t_{n-1};\cdots;y_1,t_1)P(y_{n-1},t_{n-1};y_{n-2},t_{n-2};\cdots;y_1,t_1) \]

Markov过程定义为随机变量未来的概率分布只和当前状态有关,和再往前的历史状态无关,即

\[P(y_n,t_n|y_{n-1},t_{n-1};\cdots;y_1,t_1)=P(y_n,t_n|y_{n-1},t_{n-1}) \]

对于任意随机过程,满足Kolmogorov定理 (\(t_1<t_2<t_3\)),

\[P(y_3,t_3|y_1,t_1)=\int\text{d}y_2P(y_2,t_2|y_1,t_1)P(y_3,t_3|y_2,t_2;y_1,t_1) \]

对于Markov过程上式化简为

\[P(y_3,t_3|y_1,t_1)=\int\text{d}y_2P(y_2,t_2|y_1,t_1)P(y_3,t_3|y_2,t_2) \]

利用上式,可得 (\(0<t<t+\tau\)),

\[P(y,t+\tau|y_0,0)=\int\text{d}\xi P(y-\xi,t|y_0,0)P(y,t+\tau|y-\xi,t) \]

对于小量\(\tau\)上式左边泰勒展开得到

\[\frac{\partial}{\partial t}P(y,t|y_0,0)=\frac{1}{\tau}\left[\int\text{d}\xi P(y-\xi,t|y_0,0)P(y,t+\tau|y-\xi,t)-P(y,t|y_0,0)\right] \]

注意到上式括号内第二项可以写为

\[P(y,t|y_0,0)=\int\text{d}\xi P(y+\xi,t+\tau|y,t)P(y,t|y_0,0) \]

代回去得到

\[\frac{\partial}{\partial t}P(y,t|y_0,0)=\frac{1}{\tau}\left[\int\text{d}\xi P(y-\xi,t|y_0,0)P(y,t+\tau|y-\xi,t)-\int\text{d}\xi P(y+\xi,t+\tau|y,t)P(y,t|y_0,0)\right] \]

上式是一个连续性方程:某区域内的概率变化量等于流入概率减流出概率。现在关注括号中第一项,令\(z=y-\xi\),则该项就是\(z\)的函数,写为

\[\int\text{d}\xi P(z,t|y_0,0)P(z+\xi,t+\tau|z,t) \]

上式在\(z=y\)处展开为泰勒级数,得到

\[\int\text{d}\xi \sum_{n=0}^\infty \frac{(z-y)^n}{n!}\left[\frac{\partial^n}{\partial z^n}P(z,t|y_0,0)P(z+\xi,t+\tau|z,t)\right]\Bigg|_{z=y} \]

注意上面求导最后在\(z=y\)点取值,因此可以直接改写为

\[\int\text{d}\xi \sum_{n=0}^\infty \frac{(z-y)^n}{n!}\frac{\partial^n}{\partial y^n}\left[P(y,t|y_0,0)P(y+\xi,t+\tau|y,t)\right] \]

代回方括号中,得到

\[\frac{\partial}{\partial t}P(y,t|y_0,0)=\frac{1}{\tau}\left\{\int\text{d}\xi \sum_{n=0}^\infty \frac{(z-y)^n}{n!}\frac{\partial^n}{\partial y^n}\left[P(y,t|y_0,0)P(y+\xi,t+\tau|y,t)\right]-\int\text{d}\xi P(y+\xi,t+\tau|y,t)P(y,t|y_0,0)\right\} \]

其中\(n=0\)项和括号第二项抵消,从而

\[\frac{\partial}{\partial t}P(y,t|y_0,0)=\frac{1}{\tau}\int\text{d}\xi \sum_{n=1}^\infty \frac{(-1)^n}{n!}\xi^n\frac{\partial^n}{\partial y^n}\left[P(y,t|y_0,0)P(y+\xi,t+\tau|y,t)\right] \]

取极限\(\tau\to0\),得到

\[\frac{\partial}{\partial t}P(y,t|y_0,0)=\sum_{n=1}^\infty \frac{(-1)^n}{n!}\frac{\partial^n}{\partial y^n}\left[P(y,t|y_0,0)\int\text{d}\xi \lim_{\tau\to0}\frac{\xi^n}{\tau}P(y+\xi,t+\tau|y,t)\right] \]

如果随机变量\(y\)满足在时间间隔\(\tau\)很小时变化同样很小,则上面的求和保留前几项即可。物理上的一维布朗运动就是一个例子,那里的\(p(t)\)是Markov的,在演化时间\(\tau\)很小时,其变化也很小,所以只保留到二阶即可。

而有势能场的一维布朗运动是扩展版,一个粒子的一维坐标、动量组成的向量\(\{x,p\}\)是Markov过程,有对应的Fokker-Planck方程。唯一不同的是,有势能场的布朗运动那里,满足Markov的是向量\(\{x,p\}\),这涉及到上面方程的二维版本,这只需把泰勒展开换成二元函数的泰勒展开即可。对于二维的情形,对应于\(y\)的是\(x_1,x_2\),对应于\(\xi\)的是\(\xi_1,\xi_2\),从而有

\[\frac{\partial}{\partial t}P(x_1,x_2,t|x_{10},x_{20},0)=\sum_{n=1}^\infty \frac{(-1)^n}{n!}\int\text{d}\xi_1\int\text{d}\xi_2 \lim_{\tau\to0}\frac{1}{\tau}\left(\xi_1\frac{\partial}{\partial x_1}+\xi_2\frac{\partial}{\partial x_2}\right)^n\left[P(x_1,x_2,t|x_{10},x_{20},0)P(x_1+\xi_1,x_2+\xi_2,t+\tau|x_1,x_2,t)\right] \]

应用到布朗运动上,其中\(x_1\)对应于坐标\(x\)\(x_2\)对应于动量\(p\)\(\tau\)对应于\(\delta t\)\(\xi_1=x(t+\tau)-x(t)=x(t+\delta t)-x(t)\)记为\(\delta x\),同样的\(\xi_2=\delta y\),而且对于时间起点\(t=0\)记为\(t_0\),则泰勒展开保留到二阶给出 (略去极限\(\lim_{\delta t\to 0}\)不写)

\[\frac{\partial}{\partial t}P(x,p,t|x_0,p_0,t_0)=-\frac{\partial}{\partial x}\left[\frac{\overline{\delta x}}{\delta t}P(x,p,t|x_0,p_0,t_0)\right]-\frac{\partial}{\partial p}\left[\frac{\overline{\delta p}}{\delta t}P(x,p,t|x_0,p_0,t_0)\right]\\+\frac{1}{2}\frac{\partial^2}{\partial x^2}\left[\frac{\overline{(\delta x)^2}}{\delta t}P(x,p,t|x_0,p_0,t_0)\right]+\frac{1}{2}\frac{\partial^2}{\partial p^2}\left[\frac{\overline{(\delta p)^2}}{\delta t}P(x,p,t|x_0,p_0,t_0)\right]\\+\frac{\partial^2}{\partial x\partial p}\left[\frac{\overline{(\delta x)(\delta p)}}{\delta t}P(x,p,t|x_0,p_0,t_0)\right] \]

其中

\[\overline{(\delta x)^n}=\int\text{d}(\delta x)\int\text{d}(\delta p)(\delta x)^nP(x+\delta x,p+\delta p,t+\delta t|x,p,t) \]

两边同时乘以\(P(x_0,p_0,t_0)\)并对\(x_0\)\(p_0\)积分,则\(P(x,p,t|x_0,p_0,t_0)\)可以替换为\(P(x,p,t)\)

文献中常见的简记形式为

\[\frac{\partial}{\partial t}P(x_1,x_2,t)=-\frac{\partial}{\partial x_1}\mathscr{M}_1P(x_1,x_2,t)-\frac{\partial}{\partial x_2}\mathscr{M}_2P(x_1,x_2,t)+\sum_{i,j=1,2}\frac{\partial^2}{\partial x_1\partial x_2}\mathscr{D}_{ij}P(x_1,x_2,t) \]

偏导对后面整体作用,其中\(x_1,x_2\)分别为\(x,p\),且有

\[\mathscr{M}_i=\frac{\overline{\delta x_i}}{\delta t},\mathscr{D}_{ij}=\frac{1}{2!}\frac{\overline{\delta x_i\delta x_j}}{\delta t} \]

上面就是一维布朗运动中常见的Fokker-Planck方程的原型,其中的各个系数需要根据运动方程来确定。

外势场为零的一维Langevin方程为

\[\dot{p}(t)=-\gamma p(t)+F(t) \]

其中\(p(t)\)是动量,\(F(t)\)是随机力。有阻尼项的存在,动量\(p(t)\)有衰减,\(T_\text{R}=1/\gamma\)是描述\(p(t)\)衰减的特征时间,即在该时间尺度上,\(p(t)\)有显著衰减。假设这里的随机力由粒子和周围流体微粒碰撞而造成,碰撞发生在时间尺度\(\tau_c\)上,满足\(\tau_c\ll T_\text{R}\)。在大于\(\tau_c\)的时间尺度上,这里面\(p(t)\)是Markov的,下一时刻\(t+\text{d}t\)时的\(p\)仅和目前的\(p\)值相关,而和过去的\(p\)值无关。首先随机力\(F(t)\)是零均值的,即\(\langle F(t)\rangle=0\),其中均值是对系综求均值,或者说是对各可能的随机力函数求均值。并且认为随机力在大于\(\tau_c\)尺度上是无记忆的,即如果\(t'-t\gg \tau_c\),则相关函数\(\langle F(t)F(t')\rangle=2D\delta(t-t')\),这一点可以用来化简问题。直接求解Langevin方程给出

\[p(t)=p_0\text{e}^{-\gamma(t-t_0)}+\int_{t_0}^t\text{d}t'F(t')\text{e}^{-\gamma(t-t')} \]

由上式可以得到

\[\langle p(t)\rangle=p_0\text{e}^{-\gamma(t-t_0)} \]

由上面两式可以得到

\[\sigma_p^2(t)=\langle[p(t)-\langle p(t)\rangle]^2\rangle=\int^t_{t_0}\text{d}t'\int_{t_0}^t\text{d}t''\langle F(t)F(t')\rangle\text{e}^{-\gamma(t-t')}\text{e}^{-\gamma(t-t'')} \]

利用\(\langle F(t)F(t')\rangle=2D\delta(t-t')\),得到

\[\sigma_p^2(t)=\frac{D}{\gamma}\left[1-\text{e}^{-2\gamma(t-t_0)}\right] \]

对于\(\tau_c\ll t-t_0\ll T_\text{R}\)\(\sigma_p^2(t)=2D(t-t_0)\),对于\(t-t_0\gg T_\text{R}\)\(\sigma_p^2(t)=\langle p^2\rangle-\langle p\rangle^2=\langle p^2\rangle=D/\gamma\),另一方面,经过长时间后粒子和周围流体达到稳态,满足

\[\frac{\langle p^2\rangle}{2M}=\frac{1}{2}k_\text{B}T \]

从而有\(D=M\gamma k_\text{B}T\),称为爱因斯坦关系。

继续考虑外势不为零的Langevin方程,

\[\dot{x}(t)=\frac{p(t)}{M}\\ \dot{p}(t)=-\gamma p(t)-\frac{\partial U(x)}{\partial x}+F(t) \]

现在在大于\(\tau_c\)尺度上,向量\(\{x(t),p(t)\}\)是Markov的。现在利用上面方程来求前面提到的\(\mathscr{M}_i\)\(\mathscr{D}_{ij}\)。需要特别注意,例如,\(\mathscr{M}_2\)的定义为

\[\mathscr{M}_2=\lim_{\delta t\to 0}\frac{\overline{\delta p}}{\delta t}=\lim_{\delta t\to 0}\frac{1}{\delta t}\int\text{d}(\delta x)\int\text{d}(\delta p) \delta pP(x+\delta x,p+\delta p,t+\delta t|x,p,t) \]

它并不等于

\[\lim_{\delta t\to0}\frac{\langle p(t+\delta t)\rangle-\langle p(t)\rangle}{\delta t}=\frac{\partial \langle p(t)\rangle}{\partial t} \]

根据\(\mathscr{M}_2\)的定义,从\(t\)时刻一个确定的\(\{x(t),p(t)\}\)值开始,对\(\dot{p}(t)=-\gamma p(t)-\frac{\partial U(x)}{\partial x}+F(t)\)两边在\(\delta t\)短时间内积分,得到

\[\delta p=-\gamma p(t)\delta t-\frac{\partial U(x)}{\partial x}\delta t+\int_t^{t+\delta t}F(t')\text{d}t' \]

两边对系综求平均,利用\(\langle F(t)\rangle=0\)得到

\[\frac{\overline{\delta p}}{\delta t}=-\gamma p(t)-\frac{\partial U(x)}{\partial x} \]

同样计算得到

\[\frac{\overline{\delta x}}{\delta t}=\frac{p(t)}{M} \]

对于\(\frac{\overline{(\delta p)^2}}{\delta t}\),首先把上面的\(\delta p\)平方,注意\(\delta t\)的二次项贡献为零,因此只剩下最后一项有贡献,因此

\[\frac{\overline{(\delta p)^2}}{\delta t}=\lim_{\delta t\to 0}\frac{1}{\delta t}\int_t^{t+\delta t}\text{d}t'\int_t^{t+\delta t}\text{d}t'' \langle F(t')F(t'')\rangle \]

计算这个二重积分要小心。首先注意到积分区域是正方形,于是可以分为两个直角三角形区域来积分,有

\[\int_t^{t+\delta t}\text{d}t'\int_t^{t+\delta t}\text{d}t'' \langle F(t')F(t'')\rangle=2\int_t^{t+\delta t}\text{d}t'\int_{t'}^{\infty}\text{d}t'' \langle F(t')F(t'')\rangle \]

因为考虑到\(\langle F(t')F(t'')\rangle=2D\delta (t'-t'')\),所以第二个积分上限改为正无穷。因为$\delta $函数是偶函数,于是

\[\int_{t'}^\infty\text{d}t''\delta(t'-t'')=\frac{1}{2} \]

所以上面二重积分等于\(2D\delta t\),于是

\[\frac{\overline{(\delta p)^2}}{\delta t}=2D \]

因为\(\delta t\)的二次项没有贡献,因此

\[\frac{\overline{(\delta x)^2}}{\delta t}=\frac{\overline{(\delta x)(\delta p)}}{\delta t}=0 \]

至此,\(\mathscr{M}_i\)\(\mathscr{D}_{ij}\)都计算完毕,得到Fokker-Planck方程为

\[\frac{\partial P(x,p,t)}{\partial t}=-\frac{p}{M}\frac{\partial}{\partial x}P(x,p,t)+\frac{\partial}{\partial p}\left[\left(\gamma p+\frac{\partial U}{\partial x}\right)P(x,p,t)\right]+D\frac{\partial^2}{\partial p^2}P(x,p,t) \]

推荐阅读