首页 > 技术文章 > JUC并发编程

changtong1819 2021-09-19 22:44 原文

JUC

1. AQS

概述

AQS 全称是 AbstractQueuedSynchronizer,是阻塞式锁和相关的同步器工具的框架

特点:

  • 用 state 属性来表示资源的状态(分独占模式和共享模式),子类需要定义如何维护这个状态,控制如何获取锁和释放锁,其它什么等待队列、条件队列都是AQS已经维护好的。

    • getState\setState - 设置\获取 state 状态
    • compareAndSetState - cas 机制设置 state 状态
    • 独占模式是只有一个线程能够访问资源,而共享模式可以允许多个线程访问资源
  • 提供了基于 FIFO 的等待队列,类似于 Monitor 的 EntryList

  • 条件变量 Condition 来实现等待、唤醒机制,支持多个条件变量,类似于 Monitor 的 WaitSet

结构:

// 头结点,你直接把它当做 当前持有锁的线程 可能是最好理解的
private transient volatile Node head;

// 阻塞的尾节点,每个新的节点进来,都插入到最后,也就形成了一个链表
private transient volatile Node tail;

// 这个是最重要的,代表当前锁的状态,0代表没有被占用,大于 0 代表有线程持有当前锁
// 这个值可以大于 1,是因为锁可以重入,每次重入都加上 1
private volatile int state;

// 代表当前持有独占锁的线程,举个最重要的使用例子,因为锁可以重入
// reentrantLock.lock()可以嵌套调用多次,所以每次用这个来判断当前线程是否已经拥有了锁
// if (currentThread == getExclusiveOwnerThread()) {state++}
private transient Thread exclusiveOwnerThread; //继承自AbstractOwnableSynchronizer

使用:

前面说了,AQS 是用来帮我们快速构建同步器或者锁的,因此我们要做的就是在它已经定义好的结构之下对某些具体方法(state 的获取释放)进行实现即可,注意,结构是不变的

子类主要实现这样一些方法

  • tryAcquire\tryRelease 尝试获取\释放锁

  • isHeldExclusively 如果同步是以独占方式进行的,则返回true;其它情况则返回 false

    Exclusive独占

自定义同步器

final class MySync extends AbstractQueuedSynchronizer {
    @Override
    protected boolean tryAcquire(int acquires) {
        if (acquires == 1){
            if (compareAndSetState(0, 1)) {
                setExclusiveOwnerThread(Thread.currentThread());
                return true;
            }
        }
        return false;
    }
    @Override
    protected boolean tryRelease(int acquires) {
        if(acquires == 1) {
            if(getState() == 0) {
                throw new IllegalMonitorStateException();
            }
            setExclusiveOwnerThread(null);
            setState(0);
            return true;
        }
        return false;
    }
    protected Condition newCondition() {
        return new ConditionObject();
    }
    @Override
    protected boolean isHeldExclusively() {
        return getState() == 1;
    }
}

自定义锁
有了自定义同步器,很容易复用 AQS ,实现一个功能完备的自定义锁

class MyLock implements Lock {
    static MySync sync = new MySync();
    @Override
    // 尝试,不成功,进入等待队列
    public void lock() {
        sync.acquire(1);
    }
    @Override
    // 尝试,不成功,进入等待队列,可打断
    public void lockInterruptibly() throws InterruptedException {
        sync.acquireInterruptibly(1);
    }
    @Override
    // 尝试一次,不成功返回,不进入队列
    public boolean tryLock() {
        return sync.tryAcquire(1);
    }
    @Override
    // 尝试,不成功,进入等待队列,有时限
    public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
        return sync.tryAcquireNanos(1, unit.toNanos(time));
    }
    @Override
    // 释放锁
    public void unlock() {
        sync.release(1);
    }
    @Override
    // 生成条件变量
    public Condition newCondition() {
        return sync.newCondition();
    }
}

详解

AQS的设计理念完全是围绕state状态、队列设计来的,其余的思想无非是对当前状态的修改、条件控制线程的阻塞与唤醒从而实现高效的锁控制,这就构成了一个同步器。因此,其核心设计逃不开这三板斧,即:

img

AQS采用了设计模式中的模板方式模式。暴露出tryAcquiretryRelease等方法由子类来实现。即在其运行流程中有调用这些方法,但是这些方法其实还没实现,需要子类来重写实现。

注意,需要我们子类实现的是tryXxx尝试锁的方法,因为acquirerelease直接进行锁操作(加入队列、修改锁的持有线程)的方法是AQS已经实现并且已经定义为final了,上源码

//加锁源码
public final void acquire(int arg) {
    if (!tryAcquire(arg) &&
        acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
        selfInterrupt();
}

//释放锁源码
public final boolean release(int arg) {
    if (tryRelease(arg)) {
        Node h = head;
        if (h != null && h.waitStatus != 0)
            unparkSuccessor(h);
        return true;
    }
    return false;
}
//这里只贴出来独占锁的代码,至于能否重入的具体实现就体现在tryXxx()代码中了
//在尝试获取锁的时候,我们可以判断state状态是否为0,表示是否锁被占用,那么
//如果我们想实现可重入,思路就来了,再判断当前持有锁的线程是否为当前线程即可
//共享锁的话,由于锁对象可以被多个线程持有,思路不太一样
public final void acquireShared(int arg) {
    if (tryAcquireShared(arg) < 0)
        doAcquireShared(arg);
}
//也是需要我们实现tryAcquireShared
//跟独占锁相比,共享锁的主要特征在于当一个在等待队列中的共享节点成功获取到锁以后(它获取到的是共享锁)
//既然是共享,那它必须要依次唤醒后面所有可以跟它一起共享当前锁资源的节点,
//毫无疑问,这些节点必须也是在等待共享锁
//(这是大前提,如果等待的是独占锁,那前面已经有一个共享节点获取锁了,它肯定是获取不到的)。

由此引出了AQS的三大关键操作:

同步器的状态变更、线程阻塞和释放、插入和移出队列

它们对应着我们了解AQS必须掌握的三个基本组件:

  • 同步器状态的原子性管理
  • 线程阻塞与解除阻塞
  • 队列的管理

同步器状态的原子性管理

AQS 类使用 state 来保存同步状态,并暴露出getStatesetState以及compareAndSetState操作来读取和更新这个同步状态(即子类实现)。

/**
     * The synchronization state.
     */
private volatile int state;

state 设计

  • state 使用 volatile 配合 cas 保证其修改时的原子性
  • state 使用了 32bit int 来维护同步状态,因为当时使用 long 在很多平台下测试的结果并不理想

我们使用AQS来创建自己的同步器、锁,无非就是实现对 state 的管理控制的具体方法,因此对 state 的运用非常重要,此外 state 还是我们实现可重入的依据,即可重入时 state 值是可以增加的,释放就减。

线程阻塞与解除阻塞

阻塞与恢复设计:

  • 早期的控制线程暂停和恢复的 api 有 suspend 和 resume,但它们是不可用的,因为如果先调用的 resume那么 suspend 将感知不到
  • 解决方法是使用 park & unpark 来实现线程的暂停和恢复
  • 什么?你说为什么不用 wait/notify 第一,它俩是要锁对象来调用的方法,并且唤醒还是随机唤醒的,怎么用?退一万步说,我都用上synchronized 对象锁了,那还搞这些同步器干嘛?
  • park & unpark 是针对线程的,而不是针对同步器的,因此控制粒度更为精细,并且还可以通过 interrupt 打断,持有锁的线程释放锁后就可以使用 unpark 唤醒下一个抢夺锁的线程,新线程获取锁失败加入阻塞队列后也会调用 park 让自己休息。

所以接下来介绍一下park/unpark

暂停当前线程 恢复某个线程的运行
LockSupport.park(); LockSupport.unpark(暂停线程对象);
  1. park 中的线程,处于 Waiting 状态
  2. unpark 既可以在 park 之前调用也可以之后调用,都是用来恢复某个线程的运行,简单的说,调用 unpark 后再调用 park 线程依然不会暂停,类似提前“解毒”
  3. 听说 park/unpark 这样能解决线程顺序问题,例如wait/notify顺序颠倒就会出现某一个未被唤醒就一直等待,但是无论先还是后park我们都不会一直阻塞

队列的管理

Node节点:

既然都提到队列了,自然是离不开队列里的Node节点构造

static final class Node {
    // 标识节点当前在共享模式下
    static final Node SHARED = new Node();
    // 标识节点当前在独占模式下
    static final Node EXCLUSIVE = null;
    // 下面的几个int常量是给waitStatus节点状态用的 
    // 代码此线程取消了争抢这个锁
    static final int CANCELLED =  1;
    // 官方的描述是,其表示当前node的后继节点对应的线程需要被唤醒
    static final int SIGNAL    = -1;
    // CONDITION状态的结点将从等待队列转移到同步队列中,等待获取同步锁
    static final int CONDITION = -2;
    // 共享模式下,前继结点不仅会唤醒其后继结点,同时也可能会唤醒后继的后继结点。
    static final int PROPAGATE = -3;
    // 这么理解,暂时只需要知道如果这个值 大于0 代表此线程取消了等待,
    volatile int waitStatus;
    // 前驱节点的引用
    volatile Node prev;
    // 后继节点的引用
    volatile Node next;
    // 这个就是线程本尊
    volatile Thread thread;
}

Node 的数据结构其实就是 thread waitStatus pre next 四个属性而已

同步(阻塞)队列:

整个框架的核心就是如何管理线程阻塞队列,该队列是严格的FIFO队列,因此不支持线程优先级的同步。同步队列的最佳选择是自身没有使用底层锁来构造的非阻塞数据结构,因此阻塞队列的移除与添加都使用了CAS。

队列中有 head 和 tail 两个指针节点,都用 volatile 修饰配合 cas 使用,每个节点有 waitState 维护节点状态,注意,虽然节点都是连在一起的,但是 head 节点是不算在阻塞队列里的,因为它已经持有资源了

img

前面我们提到了加锁的源代码

//加锁源码
public final void acquire(int arg) {
    if (!tryAcquire(arg) &&
        acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
        selfInterrupt();
}

逐步分析addWaiteracquireQueued方法

addWaiter将当前线程加入阻塞队列的源代码

private Node addWaiter(Node mode) {
    //以给定模式构造结点。mode有两种:EXCLUSIVE(独占)和SHARED(共享)
    Node node = new Node(Thread.currentThread(), mode);

    //尝试快速方式直接放到队尾。
    Node pred = tail;
    if (pred != null) {
        node.prev = pred;
        if (compareAndSetTail(pred, node)) {
            pred.next = node;
            return node;
        }
    }
    //上一步失败则通过enq入队。
    enq(node);
    return node;
}

enq将节点加入阻塞队列队尾的源代码

private Node enq(final Node node) {
    //这里就是经典空循环CAS自旋
    for (;;) {
        Node t = tail;//读取当前的尾部节点
        if (t == null) { // 如果当前尾结点为空,就证明还没有初始化
            //创建一个新空节点作为头结点
            if (compareAndSetHead(new Node()))
                tail = head;
        } else {
            //尾结点不为空,将节点插入到尾部
            node.prev = t;
            //将当前节点作为尾结点
            if (compareAndSetTail(t, node)) {
                t.next = node;
                return t;
            }
        }
    }
}
//注意这为什么没讲compareAndSetHead和compareAndSetTail方法
//因为这两个方法真就是见名知意,里面调用的unsafe.compareAndSwapObject方法

因为遵循FIFO规则,所以能成功获取到AQS同步状态的必定是首节点,首节点的线程在释放同步状态时,会唤醒后续节点,而后续节点会在获取AQS同步状态成功的时候将自己设置为首节点。

acquireQueued在阻塞队列中等待获取资源的机会

final boolean acquireQueued(final Node node, int arg) {
    boolean failed = true;//标记是否成功拿到资源
    try {
        boolean interrupted = false;//标记等待过程中是否被中断过

        //又是一个“自旋”!
        for (;;) {
            final Node p = node.predecessor();//拿到前驱
            //如果前驱是head,即该结点已成老二,那么便有资格去尝试获取资源(可能是老大释放完资源唤醒自己的,当然也可能被interrupt了)。
            if (p == head && tryAcquire(arg)) {
                setHead(node);//拿到资源后,将head指向该结点。所以head所指的标杆结点,就是当前获取到资源的那个结点或null。
                p.next = null; // setHead中node.prev已置为null,此处再将head.next置为null,就是为了方便GC回收以前的head结点。也就意味着之前拿完资源的结点出队了!
                failed = false; // 成功获取资源
                return interrupted;//返回等待过程中是否被中断过
            }

            //如果自己可以休息了,就通过park()进入waiting状态,直到被unpark()。如果不可中断的情况下被中断了,那么会从park()中醒过来,发现拿不到资源,从而继续进入park()等待。
            if (shouldParkAfterFailedAcquire(p, node) &&
                parkAndCheckInterrupt())
                interrupted = true;//如果等待过程中被中断过,哪怕只有那么一次,就将interrupted标记为true
        }
    } finally {
        if (failed) // 如果等待过程中没有成功获取资源(如timeout,或者可中断的情况下被中断了),那么取消结点在队列中的等待。
            cancelAcquire(node);
    }
}

所以我们可以知道acquire加锁这一方法的整体流程

  1. 调用我们子类实现的tryAcquire方法尝试CAS获取锁状态state,如果获取成功就直接返回,代表加锁成功
  2. 如果tryAcquire失败,那就addWaiter()将线程添加到阻塞队列,并标记独占模式
  3. acquireQueued使节点在队列中休息park,有机会就CAS获取资源(到自己会被前一个节点unpark
  4. 如果线程在等待过程中被中断过,它是不响应的。只是获取资源后才再进行自我中断selfInterrupt(),将中断补上。

至于release释放锁,步骤也类似,这里就不贴源码了,走一下流程:

  1. 调用我们子类实现的tryRelease来释放资源
  2. 成功就调用unparkSuccessor来唤醒等待队列的下一个线程

条件队列:

作为一个同步器,对线程的各种控制例如阻塞、唤醒等操作是避免不了的,那么我们该怎么实现这些功能呢?前面说到了 park\unpark 方法,但是仅仅依靠这两个方法来实现一个完善的同步器显然是不够的,因此AQS还存在一个内部类,即ConditionObject,该类对这两个方法进行了一次封装,形成await()signal() 方法,更加灵活,可以创建多个条件变量,每个条件变量维护一个条件队列,实现对线程的精确控制。

我们先来看看在ReentrantLock中怎么使用条件队列Condition的

public class ConditionDemo {
    public static void main(String[] args) {
        Lock lock = new ReentrantLock();
        /**
         * 和Object对象的wait/notify只能操作一个monitor中的waitset不同
         * condition可以实现有多少个condition就能创建多少个队列,所以其实condition也就是条件队列,用来进行线程间协调通信
         */
        Condition hongCondition = lock.newCondition();
        Condition lanCondition = lock.newCondition();
        Condition heiCondition = lock.newCondition();
        ThreadPoolExecutor executor = new ThreadPoolExecutor(10, 20, 100, TimeUnit.MINUTES, new LinkedBlockingDeque<>(), new ThreadPoolExecutor.AbortPolicy());
        executor.execute(()->{
            System.out.println("这里是小红!");
            lock.lock();
            System.out.println("我要阻塞了,希望小黑唤醒我");
            try {
                hongCondition.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("我被唤醒了,我要唤醒小蓝");
            lanCondition.signal();
            lock.unlock();
        });
        executor.execute(()->{
            System.out.println("这里是小蓝!");
            lock.lock();
            System.out.println("我要阻塞了,希望小红唤醒我");
            try {
                lanCondition.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("我被唤醒了,你们都醒了吗?");
            lock.unlock();
        });
        executor.execute(()->{
            System.out.println("这里是小黑!");
            lock.lock();
            System.out.println("小红醒一醒,我来唤醒你");
            hongCondition.signal();
            lock.unlock();
        });
        executor.shutdown();
    }
}

image-20210731101944511

从上面我们可以看出(看得出个der,举的什么例子,太烂了),相对于synchronized 对象锁调用 wait() 方法将线程阻塞到同一个 WaitSet,我们使用 condition 能够在同一个锁的情况下,将争夺锁的线程给阻塞到不同的队列并分别唤醒。

ConditionObject 的 await() 方法源码

public final void await() throws InterruptedException {
    if (Thread.interrupted())
        throw new InterruptedException();
    //新建一个Node.CONDITION节点放到条件队列最后面
    Node node = addConditionWaiter();
    //释放当前线程获取的锁
    int savedState = fullyRelease(node);
    int interruptMode = 0;
    //调用park()方法阻塞挂起当前线程
    while (!isOnSyncQueue(node)) {
        LockSupport.park(this);
        if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
            break;
    }
    if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
        interruptMode = REINTERRUPT;
    if (node.nextWaiter != null) // clean up if cancelled
        unlinkCancelledWaiters();
    if (interruptMode != 0)
        reportInterruptAfterWait(interruptMode);
}

signal() 方法

public final void signal() {
    if (!isHeldExclusively())
        throw new IllegalMonitorStateException();
    //条件队列移除第一个节点,然后把这个节点丢到阻塞队列中,然后激活这个线程
    Node first = firstWaiter;
    if (first != null)
        doSignal(first);
}

两种队列关系梳理(条件队列 阻塞队列)

  1. 当多个线程调用 lock.lock() 方法的时候,只有一个线程获取到锁,其他的线程都会被转为 Node 节点丢到 AQS 的阻塞队列中,并做 CAS 自旋获取锁
  2. 当获取到锁的线程对应的条件变量的 await() 方法被调用的时候,该线程就会释放锁,并把当前线程转为 Node 节点放到条件变量对应的条件队列中
  3. 这个时候 AQS 的阻塞队列中又会有一个节点中的线程能得到锁了,如果这个线程又恰巧调用了对应条件变量的 await() 方法时,又会重复2的步骤,然后阻塞队列中又会有一个节点中的线程获得锁
  4. 然后,又有一个线程调用了条件变量的 signal() 或者 signalAll() 方法,就会把条件队列中一个或者所有的节点都移动到 AQS 阻塞队列中,然后调用 unpark 方法进行授权,就等着获得锁了

仔细想想,这不就是和对象锁的逻辑一样么?

一个锁对应一个阻塞队列,但是对应多个条件变量,每一个条件变量对应一个条件队列。其中,这两种队列中存放的都是Node节点,Node节点中封装了线程及其状态。

常用实现工具类

image-20210715231138659

2. ReentrantLock 原理

image-20210715231210797

ReentrantLock重入锁,是实现Lock接口的一个类,也是在实际编程中使用频率很高的一个锁,支持重入性,表示能够对共享资源能够重复加锁,即当前线程获取该锁再次获取不会被阻塞。

Synchronized锁可重入在于monitor中有一个count字段计数,重入就加,出就减。

与此同时,ReentrantLock还支持公平锁和非公平锁两种方式。那么,要想完完全全的弄懂ReentrantLock的话,主要也就是ReentrantLock同步语义的学习:1. 重入性的实现原理;2. 公平锁和非公平锁。

非公平锁实现原理

加锁解锁流程

先从构造器开始看,默认为非公平锁实现

public ReentrantLock() {
    sync = new NonfairSync();
}

NonfairSync 继承自 AQS

  • 没有竞争时

image-20210715231648912

  • 第一个竞争出现时

image-20210715231710275

Thread-1 执行了

  1. CAS 尝试将 state 由 0 改为 1,结果失败
  2. 进入 tryAcquire 逻辑,这时 state 已经是1,结果仍然失败
  3. 接下来进入 addWaiter 逻辑,构造 Node 队列
  • 图中黄色三角表示该 Node 的 waitStatus 状态,其中 0 为默认正常状态
  • Node 的创建是懒惰的
  • 其中第一个 Node 称为 Dummy(哑元)或哨兵,用来占位,并不关联线程

image-20210715231952497

当前线程进入 acquireQueued 逻辑

  1. acquireQueued 会在一个死循环中不断尝试获得锁,失败后进入 park 阻塞
  2. 如果自己是紧邻着 head(排第二位),那么再次 tryAcquire 尝试获取锁,当然这时 state 仍为 1,失败
  3. 进入 shouldParkAfterFailedAcquire 逻辑,将前驱 node,即 head 的 waitStatus 改为 -1,这次返回 false

image-20210715232033185

  1. shouldParkAfterFailedAcquire 执行完毕回到 acquireQueued ,再次 tryAcquire 尝试获取锁,当然这时state 仍为 1,失败
  2. 当再次进入 shouldParkAfterFailedAcquire 时,这时因为其前驱 node 的 waitStatus 已经是 -1,这次返回true
  3. 进入 parkAndCheckInterrupt, Thread-1 park(灰色表示)

image-20210715232105723

再次有多个线程经历上述过程竞争失败,变成这个样子

image-20210715232130587

Thread-0 释放锁,进入 tryRelease 流程,如果成功

  • 设置 exclusiveOwnerThread 为 null
  • state = 0

image-20210715232205163

当前队列不为 null,并且 head 的 waitStatus = -1,进入 unparkSuccessor 流程
找到队列中离 head 最近的一个 Node(没取消的),unpark 恢复其运行,本例中即为 Thread-1
回到 Thread-1 的 acquireQueued 流程

image-20210715232233955

如果加锁成功(没有竞争),会设置

  • exclusiveOwnerThread 为 Thread-1,state = 1
  • head 指向刚刚 Thread-1 所在的 Node,该 Node 清空 Thread
  • 原本的 head 因为从链表断开,而可被垃圾回收

如果这时候有其它线程来竞争(非公平的体现),例如这时有 Thread-4 来了

image-20210715232320378

如果不巧又被 Thread-4 占了先

  • Thread-4 被设置为 exclusiveOwnerThread,state = 1
  • Thread-1 再次进入 acquireQueued 流程,获取锁失败,重新进入 park 阻塞

加锁源码

// Sync 继承自 AQS
static final class NonfairSync extends Sync {
    private static final long serialVersionUID = 7316153563782823691L;
    // 加锁实现
    final void lock() {
        // 首先用 cas 尝试(仅尝试一次)将 state 从 0 改为 1, 如果成功表示获得了独占锁
        if (compareAndSetState(0, 1))
            setExclusiveOwnerThread(Thread.currentThread());
        else
            // 如果尝试失败,进入 ㈠
            acquire(1);
    }
    // ㈠ AQS 继承过来的方法, 方便阅读, 放在此处
    public final void acquire(int arg) {
        // ㈡ tryAcquire
        if (
            !tryAcquire(arg) &&
            // 当 tryAcquire 返回为 false 时, 先调用 addWaiter ㈣, 接着 acquireQueued ㈤
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg)
        ) {
            selfInterrupt();
        }
    }
    // ㈡ 进入 ㈢
    protected final boolean tryAcquire(int acquires) {
        return nonfairTryAcquire(acquires);
    }
    // ㈢ Sync 继承过来的方法, 方便阅读, 放在此处
    final boolean nonfairTryAcquire(int acquires) {
        final Thread current = Thread.currentThread();
        int c = getState();
        // 如果还没有获得锁
        if (c == 0) {
            // 尝试用 cas 获得, 这里体现了非公平性: 不去检查 AQS 队列
            if (compareAndSetState(0, acquires)) {
                setExclusiveOwnerThread(current);
                return true;
            }
        }
        // 如果已经获得了锁, 线程还是当前线程, 表示发生了锁重入
        else if (current == getExclusiveOwnerThread()) {
            // state++
            int nextc = c + acquires;
            if (nextc < 0) // overflow
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        // 获取失败, 回到调用处
        return false;
    }
    // ㈣ AQS 继承过来的方法, 方便阅读, 放在此处
    private Node addWaiter(Node mode) {
        // 将当前线程关联到一个 Node 对象上, 模式为独占模式
        Node node = new Node(Thread.currentThread(), mode);
        // 如果 tail 不为 null, cas 尝试将 Node 对象加入 AQS 队列尾部
        Node pred = tail;
        if (pred != null) {
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {
                // 双向链表
                pred.next = node;
                return node;
            }
        }
        // 尝试将 Node 加入 AQS, 进入 ㈥
        enq(node);
        return node;
    }
    // ㈥ AQS 继承过来的方法, 方便阅读, 放在此处
    private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            if (t == null) {
                // 还没有, 设置 head 为哨兵节点(不对应线程,状态为 0)
                if (compareAndSetHead(new Node())) {
                    tail = head;
                }
            } else {
                // cas 尝试将 Node 对象加入 AQS 队列尾部
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }
    // ㈤ AQS 继承过来的方法, 方便阅读, 放在此处
    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                // 上一个节点是 head, 表示轮到自己(当前线程对应的 node)了, 尝试获取
                if (p == head && tryAcquire(arg)) {
                    // 获取成功, 设置自己(当前线程对应的 node)为 head
                    setHead(node);
                    // 上一个节点 help GC
                    p.next = null;
                    failed = false;
                    // 返回中断标记 false
                    return interrupted;
                }
                if (
                    // 判断是否应当 park, 进入 ㈦
                    shouldParkAfterFailedAcquire(p, node) &&
                    // park 等待, 此时 Node 的状态被置为 Node.SIGNAL ㈧
                    parkAndCheckInterrupt()
                ) {
                    interrupted = true;
                }
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
    // ㈦ AQS 继承过来的方法, 方便阅读, 放在此处
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        // 获取上一个节点的状态
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL) {
            // 上一个节点都在阻塞, 那么自己也阻塞好了
            return true;
        }
        // > 0 表示取消状态
        if (ws > 0) {
            // 上一个节点取消, 那么重构删除前面所有取消的节点, 返回到外层循环重试
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            // 这次还没有阻塞
            // 但下次如果重试不成功, 则需要阻塞,这时需要设置上一个节点状态为 Node.SIGNAL
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }
    // ㈧ 阻塞当前线程
    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }
}

注意

是否需要 unpark 是由当前节点的前驱节点的 waitStatus == Node.SIGNAL 来决定,而不是本节点的waitStatus 决定

解锁源码

// Sync 继承自 AQS
static final class NonfairSync extends Sync {
    // 解锁实现
    public void unlock() {
        sync.release(1);
    }
    // AQS 继承过来的方法, 方便阅读, 放在此处
    public final boolean release(int arg) {
        // 尝试释放锁, 进入 ㈠
        if (tryRelease(arg)) {
            // 队列头节点 unpark
            Node h = head;
            if (
                // 队列不为 null
                h != null &&
                // waitStatus == Node.SIGNAL 才需要 unpark
                h.waitStatus != 0
            ) {
                // unpark AQS 中等待的线程, 进入 ㈡
                unparkSuccessor(h);
            }
            return true;
        }
        return false;
    }
    // ㈠ Sync 继承过来的方法, 方便阅读, 放在此处
    protected final boolean tryRelease(int releases) {
        // state--
        int c = getState() - releases;
        if (Thread.currentThread() != getExclusiveOwnerThread())
            throw new IllegalMonitorStateException();
        boolean free = false;
        // 支持锁重入, 只有 state 减为 0, 才释放成功
        if (c == 0) {
            free = true;
            setExclusiveOwnerThread(null);
        }
        setState(c);
        return free;
    }
    // ㈡ AQS 继承过来的方法, 方便阅读, 放在此处
    private void unparkSuccessor(Node node) {
        // 如果状态为 Node.SIGNAL 尝试重置状态为 0
        // 不成功也可以
        int ws = node.waitStatus;
        if (ws < 0) {
            compareAndSetWaitStatus(node, ws, 0);
        }
        // 找到需要 unpark 的节点, 但本节点从 AQS 队列中脱离, 是由唤醒节点完成的
        Node s = node.next;
        // 不考虑已取消的节点, 从 AQS 队列从后至前找到队列最前面需要 unpark 的节点
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            LockSupport.unpark(s.thread);
    }
}

可重入原理

static final class NonfairSync extends Sync {
    // ...
    // Sync 继承过来的方法, 方便阅读, 放在此处
    final boolean nonfairTryAcquire(int acquires) {
        final Thread current = Thread.currentThread();
        int c = getState();
        if (c == 0) {
            if (compareAndSetState(0, acquires)) {
                setExclusiveOwnerThread(current);
                return true;
            }
        }
        // 如果已经获得了锁, 线程还是当前线程, 表示发生了锁重入
        else if (current == getExclusiveOwnerThread()) {
            // state++
            int nextc = c + acquires;
            if (nextc < 0) // overflow
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        return false;
    }
    // Sync 继承过来的方法, 方便阅读, 放在此处
    protected final boolean tryRelease(int releases) {
        // state--
        int c = getState() - releases;
        if (Thread.currentThread() != getExclusiveOwnerThread())
            throw new IllegalMonitorStateException();
        boolean free = false;
        // 支持锁重入, 只有 state 减为 0, 才释放成功
        if (c == 0) {
            free = true;
            setExclusiveOwnerThread(null);
        }
        setState(c);
        return free;
    }
}

可打断原理

不可打断模式

在此模式下,即使它被打断,仍会驻留在 AQS 队列中,一直要等到获得锁后方能得知自己被打断了

// Sync 继承自 AQS
static final class NonfairSync extends Sync {
    // ...
    private final boolean parkAndCheckInterrupt() {
        // 如果打断标记已经是 true, 则 park 会失效
        LockSupport.park(this);
        // interrupted 会清除打断标记
        return Thread.interrupted();
    }
    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null;
                    failed = false;
                    // 还是需要获得锁后, 才能返回打断状态
                    return interrupted;
                }
                if (
                    shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt()
                ) {
                    // 如果是因为 interrupt 被唤醒, 返回打断状态为 true
                    interrupted = true;
                }
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
    public final void acquire(int arg) {
        if (
            !tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg)
        ) {
            // 如果打断状态为 true
            selfInterrupt();
        }
    }
    static void selfInterrupt() {
        // 重新产生一次中断
        Thread.currentThread().interrupt();
    }
}

可打断模式

static final class NonfairSync extends Sync {
    public final void acquireInterruptibly(int arg) throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        // 如果没有获得到锁, 进入 ㈠
        if (!tryAcquire(arg))
            doAcquireInterruptibly(arg);
    }
    // ㈠ 可打断的获取锁流程
    private void doAcquireInterruptibly(int arg) throws InterruptedException {
        final Node node = addWaiter(Node.EXCLUSIVE);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt()) {
                    // 在 park 过程中如果被 interrupt 会进入此
                    // 这时候抛出异常, 而不会再次进入 for (;;)
                    throw new InterruptedException();
                }
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
}

公平锁实现原理

公平锁:每次都是等待队列的队首获得锁

非公平锁:每次都是等待队列全部去尝试获取锁,谁抢到算谁的

ReentranLock 默认非公平锁,Synchronize 非公平锁

ReentranLock 的公平锁非公平锁实现原理主要在于对 AQS 的 tryAcquire 的实现,公平锁在确认 state 为 0 即目前无人持有锁时,会先判断当前想要持有锁的线程是否有前驱节点,而非公平锁就不判断,直接 CAS 尝试修改 state

static final class FairSync extends Sync {
    private static final long serialVersionUID = -3000897897090466540L;
    final void lock() {
        acquire(1);
    }
    // AQS 继承过来的方法, 方便阅读, 放在此处
    public final void acquire(int arg) {
        if (
            !tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg)
        ) {
            selfInterrupt();
        }
    }
    // 与非公平锁主要区别在于 tryAcquire 方法的实现
    protected final boolean tryAcquire(int acquires) {
        final Thread current = Thread.currentThread();
        int c = getState();
        if (c == 0) {
            // 先检查 AQS 队列中是否有前驱节点, 没有才去竞争
            if (!hasQueuedPredecessors() &&
                compareAndSetState(0, acquires)) {
                setExclusiveOwnerThread(current);
                return true;
            }
        }
        else if (current == getExclusiveOwnerThread()) {
            int nextc = c + acquires;
            if (nextc < 0)
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        return false;
    }
    // ㈠ AQS 继承过来的方法, 方便阅读, 放在此处
    public final boolean hasQueuedPredecessors() {
        Node t = tail;
        Node h = head;
        Node s;
        // h != t 时表示队列中有 Node
        return h != t &&
            (
            // (s = h.next) == null 表示队列中还有没有老二
            (s = h.next) == null ||
            // 或者队列中老二线程不是此线程
            s.thread != Thread.currentThread()
        );
    }
}

条件变量实现原理

每个条件变量其实就对应着一个等待队列,其实现类是 ConditionObject

await 流程

开始 Thread-0 持有锁,调用 await,进入 ConditionObject 的 addConditionWaiter 流程
创建新的 Node 状态为 -2(Node.CONDITION),关联 Thread-0,加入等待队列尾部

image-20210715233704677

接下来进入 AQS 的 fullyRelease 流程,释放同步器上的锁

image-20210715233727885

unpark AQS 队列中的下一个节点,竞争锁,假设没有其他竞争线程,那么 Thread-1 竞争成功

image-20210715233750669

park 阻塞 Thread-0

image-20210715233809186

signal 流程

假设 Thread-1 要来唤醒 Thread-0

image-20210715233836737

进入 ConditionObject 的 doSignal 流程,取得等待队列中第一个 Node,即 Thread-0 所在 Node

image-20210715233859066

执行 transferForSignal 流程,将该 Node 加入 AQS 队列尾部,将 Thread-0 的 waitStatus 改为 0,Thread-3 的waitStatus 改为 -1

image-20210715233944011

Thread-1 释放锁,进入 unlock 流程,略

源码

public class ConditionObject implements Condition, java.io.Serializable {
    private static final long serialVersionUID = 1173984872572414699L;
    // 第一个等待节点
    private transient Node firstWaiter;
    // 最后一个等待节点
    private transient Node lastWaiter;
    public ConditionObject() { }
    // ㈠ 添加一个 Node 至等待队列
    private Node addConditionWaiter() {
        Node t = lastWaiter;
        // 所有已取消的 Node 从队列链表删除, 见 ㈡
        if (t != null && t.waitStatus != Node.CONDITION) {
            unlinkCancelledWaiters();
            t = lastWaiter;
        }
        // 创建一个关联当前线程的新 Node, 添加至队列尾部
        Node node = new Node(Thread.currentThread(), Node.CONDITION);
        if (t == null)
            firstWaiter = node;
        else
            t.nextWaiter = node;
        lastWaiter = node;
        return node;
    }
    // 唤醒 - 将没取消的第一个节点转移至 AQS 队列
    private void doSignal(Node first) {
        do {
            // 已经是尾节点了
            if ( (firstWaiter = first.nextWaiter) == null) {
                lastWaiter = null;
            }
            first.nextWaiter = null;
        } while (
            // 将等待队列中的 Node 转移至 AQS 队列, 不成功且还有节点则继续循环 ㈢
            !transferForSignal(first) &&
            // 队列还有节点
            (first = firstWaiter) != null
        );
    }
    // 外部类方法, 方便阅读, 放在此处
    // ㈢ 如果节点状态是取消, 返回 false 表示转移失败, 否则转移成功
    final boolean transferForSignal(Node node) {
        // 如果状态已经不是 Node.CONDITION, 说明被取消了
        if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
            return false;
        // 加入 AQS 队列尾部
        Node p = enq(node);
        int ws = p.waitStatus;
        if (
            // 上一个节点被取消
            ws > 0 ||
            // 上一个节点不能设置状态为 Node.SIGNAL
            !compareAndSetWaitStatus(p, ws, Node.SIGNAL)
        ) {
            // unpark 取消阻塞, 让线程重新同步状态
            LockSupport.unpark(node.thread);
        }
        return true;
    }
    // 全部唤醒 - 等待队列的所有节点转移至 AQS 队列
    private void doSignalAll(Node first) {
        lastWaiter = firstWaiter = null;
        do {
            Node next = first.nextWaiter;
            first.nextWaiter = null;
            transferForSignal(first);
            first = next;
        } while (first != null);
    }
    // ㈡
    private void unlinkCancelledWaiters() {
        // ...
    }
    // 唤醒 - 必须持有锁才能唤醒, 因此 doSignal 内无需考虑加锁
    public final void signal() {
        if (!isHeldExclusively())
            throw new IllegalMonitorStateException();
        Node first = firstWaiter;
        if (first != null)
            doSignal(first);
    }
    // 全部唤醒 - 必须持有锁才能唤醒, 因此 doSignalAll 内无需考虑加锁
    public final void signalAll() {
        if (!isHeldExclusively())
            throw new IllegalMonitorStateException();
        Node first = firstWaiter;
        if (first != null)
            doSignalAll(first);
    }
    // 不可打断等待 - 直到被唤醒
    public final void awaitUninterruptibly() {
        // 添加一个 Node 至等待队列, 见 ㈠
        Node node = addConditionWaiter();
        // 释放节点持有的锁, 见 ㈣
        int savedState = fullyRelease(node);
        boolean interrupted = false;
        // 如果该节点还没有转移至 AQS 队列, 阻塞
        while (!isOnSyncQueue(node)) {
            // park 阻塞
            LockSupport.park(this);
            // 如果被打断, 仅设置打断状态
            if (Thread.interrupted())
                interrupted = true;
        }
        // 唤醒后, 尝试竞争锁, 如果失败进入 AQS 队列
        if (acquireQueued(node, savedState) || interrupted)
            selfInterrupt();
    }
    // 外部类方法, 方便阅读, 放在此处
    // ㈣ 因为某线程可能重入,需要将 state 全部释放
    final int fullyRelease(Node node) {
        boolean failed = true;
        try {
            int savedState = getState();
            if (release(savedState)) {
                failed = false;
                return savedState;
            } else {
                throw new IllegalMonitorStateException();
            }
        } finally {
            if (failed)
                node.waitStatus = Node.CANCELLED;
        }
    }
    // 打断模式 - 在退出等待时重新设置打断状态
    private static final int REINTERRUPT = 1;
    // 打断模式 - 在退出等待时抛出异常
    private static final int THROW_IE = -1;
    // 判断打断模式
    private int checkInterruptWhileWaiting(Node node) {
        return Thread.interrupted() ?
            (transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) :
        0;
    }
    // ㈤ 应用打断模式
    private void reportInterruptAfterWait(int interruptMode)
        throws InterruptedException {
        if (interruptMode == THROW_IE)
            throw new InterruptedException();
        else if (interruptMode == REINTERRUPT)
            selfInterrupt();
    }
    // 等待 - 直到被唤醒或打断
    public final void await() throws InterruptedException {
        if (Thread.interrupted()) {
            throw new InterruptedException();
        }
        // 添加一个 Node 至等待队列, 见 ㈠
        Node node = addConditionWaiter();
        // 释放节点持有的锁
        int savedState = fullyRelease(node);
        int interruptMode = 0;
        // 如果该节点还没有转移至 AQS 队列, 阻塞
        while (!isOnSyncQueue(node)) {
            // park 阻塞
            LockSupport.park(this);
            // 如果被打断, 退出等待队列
            if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                break;
        }
        // 退出等待队列后, 还需要获得 AQS 队列的锁
        if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
            interruptMode = REINTERRUPT;
        // 所有已取消的 Node 从队列链表删除, 见 ㈡
        if (node.nextWaiter != null)
            unlinkCancelledWaiters();
        // 应用打断模式, 见 ㈤
        if (interruptMode != 0)
            reportInterruptAfterWait(interruptMode);
    }
    // 等待 - 直到被唤醒或打断或超时
    public final long awaitNanos(long nanosTimeout) throws InterruptedException {
        if (Thread.interrupted()) {
            throw new InterruptedException();
        }
        // 添加一个 Node 至等待队列, 见 ㈠
        Node node = addConditionWaiter();
        // 释放节点持有的锁
        int savedState = fullyRelease(node);
        // 获得最后期限
        final long deadline = System.nanoTime() + nanosTimeout;
        int interruptMode = 0;
        // 如果该节点还没有转移至 AQS 队列, 阻塞
        while (!isOnSyncQueue(node)) {
            // 已超时, 退出等待队列
            if (nanosTimeout <= 0L) {
                transferAfterCancelledWait(node);
                break;
            }
            // park 阻塞一定时间, spinForTimeoutThreshold 为 1000 ns
            if (nanosTimeout >= spinForTimeoutThreshold)
                LockSupport.parkNanos(this, nanosTimeout);
            // 如果被打断, 退出等待队列
            if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                break;
            nanosTimeout = deadline - System.nanoTime();
        }
        // 退出等待队列后, 还需要获得 AQS 队列的锁
        if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
            interruptMode = REINTERRUPT;
        // 所有已取消的 Node 从队列链表删除, 见 ㈡
        if (node.nextWaiter != null)
            unlinkCancelledWaiters();
        // 应用打断模式, 见 ㈤
        if (interruptMode != 0)
            reportInterruptAfterWait(interruptMode);
        return deadline - System.nanoTime();
    }
    // 等待 - 直到被唤醒或打断或超时, 逻辑类似于 awaitNanos
    public final boolean awaitUntil(Date deadline) throws InterruptedException {
        // ...
    }
    // 等待 - 直到被唤醒或打断或超时, 逻辑类似于 awaitNanos
    public final boolean await(long time, TimeUnit unit) throws InterruptedException {
        // ...
    }
    // 工具方法 省略 ...
}

3. 读写锁

ReentrantReadWriteLock

了解-使用

当读操作远远高于写操作时,这时候使用 读写锁读-读 可以并发,提高性能。
提供一个 数据容器类 内部分别使用读锁保护数据的 read() 方法,写锁保护数据的 write() 方法

class DataContainer {
    private Object data;
    private ReentrantReadWriteLock rw = new ReentrantReadWriteLock();
    private ReentrantReadWriteLock.ReadLock r = rw.readLock();
    private ReentrantReadWriteLock.WriteLock w = rw.writeLock();
    public Object read() {
        log.debug("获取读锁...");
        r.lock();
        try {
            log.debug("读取");
            sleep(1);
            return data;
        } finally {
            log.debug("释放读锁...");
            r.unlock();
        }
    }
    public void write() {
        log.debug("获取写锁...");
        w.lock();
        try {
            log.debug("写入");
            sleep(1);
        } finally {
            log.debug("释放写锁...");
            w.unlock();
        }
    }
}

测试 读锁-读锁 可以并发

DataContainer dataContainer = new DataContainer();
new Thread(() -> {
    dataContainer.read();
}, "t1").start();
new Thread(() -> {
    dataContainer.read();
}, "t2").start();

输出结果,从这里可以看到 Thread-0 锁定期间,Thread-1 的读操作不受影响

14:05:14.341 c.DataContainer [t2] - 获取读锁...
14:05:14.341 c.DataContainer [t1] - 获取读锁...
14:05:14.345 c.DataContainer [t1] - 读取
14:05:14.345 c.DataContainer [t2] - 读取
14:05:15.365 c.DataContainer [t2] - 释放读锁...
14:05:15.386 c.DataContainer [t1] - 释放读锁...

测试 读锁-写锁 相互阻塞

DataContainer dataContainer = new DataContainer();
new Thread(() -> {
    dataContainer.read();
}, "t1").start();
Thread.sleep(100);
new Thread(() -> {
    dataContainer.write();
}, "t2").start();

输出结果

14:04:21.838 c.DataContainer [t1] - 获取读锁...
14:04:21.838 c.DataContainer [t2] - 获取写锁...
14:04:21.841 c.DataContainer [t2] - 写入
14:04:22.843 c.DataContainer [t2] - 释放写锁...
14:04:22.843 c.DataContainer [t1] - 读取
14:04:23.843 c.DataContainer [t1] - 释放读锁...

写锁-写锁 也是相互阻塞的,这里就不测试了

注意事项

  • 读锁不支持条件变量
  • 重入时升级不支持:即持有读锁的情况下去获取写锁,会导致获取写锁永久等待
r.lock();
try {
    // ...
    w.lock();
    try {
        // ...
    } finally{
        w.unlock();
    }
} finally{
    r.unlock();
}
  • 重入时降级支持:即持有写锁的情况下去获取读锁
class CachedData {
    Object data;
    // 是否有效,如果失效,需要重新计算 data
    volatile boolean cacheValid;
    final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
    void processCachedData() {
        rwl.readLock().lock();
        if (!cacheValid) {
            // 获取写锁前必须释放读锁
            rwl.readLock().unlock();
            rwl.writeLock().lock();
            try {
                // 判断是否有其它线程已经获取了写锁、更新了缓存, 避免重复更新
                if (!cacheValid) {
                    data = ...
                        cacheValid = true;
                }
                // 降级为读锁, 释放写锁, 这样能够让其它线程读取缓存
                rwl.readLock().lock();
            } finally {
                rwl.writeLock().unlock();
            }
        }
        // 自己用完数据, 释放读锁
        try {
            use(data);
        } finally {
            rwl.readLock().unlock();
        }
    }
}

应用-缓存

**读写锁实现缓存一致性 **

使用读写锁实现一个简单的按需加载缓存

class GenericCachedDao<T> {
    // HashMap 作为缓存非线程安全, 需要保护
    HashMap<SqlPair, T> map = new HashMap<>();
    ReentrantReadWriteLock lock = new ReentrantReadWriteLock();
    GenericDao genericDao = new GenericDao();
    public int update(String sql, Object... params) {
        SqlPair key = new SqlPair(sql, params);
        // 加写锁, 防止其它线程对缓存读取和更改
        lock.writeLock().lock();
        try {
            int rows = genericDao.update(sql, params);
            map.clear();
            return rows;
        } finally {
            lock.writeLock().unlock();
        }
    }
    public T queryOne(Class<T> beanClass, String sql, Object... params) {
        SqlPair key = new SqlPair(sql, params);
        // 加读锁, 防止其它线程对缓存更改
        lock.readLock().lock();
        try {
            T value = map.get(key);
            if (value != null) {
                return value;
            }
        } finally {
            lock.readLock().unlock();
        }
        // 加写锁, 防止其它线程对缓存读取和更改
        lock.writeLock().lock();
        try {
            // get 方法上面部分是可能多个线程进来的, 可能已经向缓存填充了数据
            // 为防止重复查询数据库, 再次验证
            T value = map.get(key);
            if (value == null) {
                // 如果没有, 查询数据库
                value = genericDao.queryOne(beanClass, sql, params);
                map.put(key, value);
            }
            return value;
        } finally {
            lock.writeLock().unlock();
        }
    }
    // 作为 key 保证其是不可变的
    class SqlPair {
        private String sql;
        private Object[] params;
        public SqlPair(String sql, Object[] params) {
            this.sql = sql;
            this.params = params;
        }
        @Override
        public boolean equals(Object o) {
            if (this == o) {
                return true;
            }
            if (o == null || getClass() != o.getClass()) {
                return false;
            }
            SqlPair sqlPair = (SqlPair) o;
            return sql.equals(sqlPair.sql) &&
                Arrays.equals(params, sqlPair.params);
        }
        @Override
        public int hashCode() {
            int result = Objects.hash(sql);
            result = 31 * result + Arrays.hashCode(params);
            return result;
        }
    }
}

注意

  • 以上实现体现的是读写锁的应用,保证缓存和数据库的一致性,但有下面的问题没有考虑

    • 适合读多写少,如果写操作比较频繁,以上实现性能低
    • 没有考虑缓存容量
    • 没有考虑缓存过期
    • 只适合单机
    • 并发性还是低,目前只会用一把锁
    • 更新方法太过简单粗暴,清空了所有 key
  • 乐观锁实现:用 CAS 去更新

原理

图解流程

读写锁用的是同一个 Sycn 同步器,因此等待队列、state 等也是同一个

t1 w.lock , t2 r.lock

  1. t1 成功上锁,流程与 ReentrantLock 加锁相比没有特殊之处,不同是写锁状态占了 state 的低 16 位,而读锁使用的是 state 的高 16 位

    image-20210716222217290

  2. t2 执行 r.lock,这时进入读锁的 sync.acquireShared(1) 流程,首先会进入 tryAcquireShared 流程。如果有写锁占据,那么 tryAcquireShared 返回 -1 表示失败

    tryAcquireShared 返回值表示

    • -1 表示失败

    • 0 表示成功,但后继节点不会继续唤醒

    • 正数表示成功,而且数值是还有几个后继节点需要唤醒,读写锁返回 1

    image-20210716222326518

  3. 这时会进入 sync.doAcquireShared(1) 流程,首先也是调用 addWaiter 添加节点,不同之处在于节点被设置为Node.SHARED 模式而非 Node.EXCLUSIVE 模式,注意此时 t2 仍处于活跃状态

    image-20210716222359168

  4. t2 会看看自己的节点是不是老二,如果是,还会再次调用 tryAcquireShared(1) 来尝试获取锁

  5. 如果没有成功,在 doAcquireShared 内 for (;

推荐阅读