首页 > 技术文章 > LGP4456题解

lmpp 2022-01-11 15:41 原文

我就是不用矩阵快速幂!

题意:一个 \(\rm 01\) 序列为合法的当且仅当没有两个相邻的 \(1\),若 \(1\) 的个数为 \(x\)\(0\) 的个数为 \(y\),这个 \(\rm 01\) 的价值为 \(x^a \times y^b\)

请求出所有长度为 \(n\)\(\rm 01\) 序列的价值之和,对 \(m\) 取模。

这道题的阴间之处就在于 \(m\) 不一定是质数。。。

首先我们枚举 \(1\) 的个数,可以得到答案为:

\[\sum_{i=0}^n\binom {n-i+1} ii^b(n-i)^a \]

如果 \(m\) 是质数的话,这里就可以直接 \(O(n)\) 计算了,可惜并不是。

考虑使用二项式定理展开后者:

\[\sum_{i=0}^{\infty}\binom {n-i+1}ii^b\sum_{j=0 }^a\binom a jn^{a-j}(-i)^j \]

\[\sum_{j=0}^a\binom a jn^{a-j}(-1)^j\sum_{i=0}^{\infty}\binom {n-i+1} ii^{b+j} \]

现在的问题就是如何处理 \(\sum_{i=0}^{\infty}\binom {n-i+1}ii^k\)

使用 \(\binom n m=\binom {n-1} m+\binom {n-1}{m-1}\) 展开组合数:

\[f_{n,k}=\sum_{i=0}^{\infty}\binom {n-i} i i^k \]

\[f_{n,k}=\sum_{i=0}^{\infty}(\binom {n-i-1} i+\binom {n-i-1}{i-1})i^k \]

\[f_{n,k}=\sum_{i=0}^{\infty}\binom {n-i-1}i i^k+\sum_{i=1}^{\infty}\binom {n-i-1}{i-1} i^k \]

\[f_{n,k}=f_{n-1,k}+\sum_{i=0}^{\infty}\binom {n-i-2} i(i+1)^k \]

把后面用二项式定理展开:

\[\sum_{i=0}^{\infty}\binom {n-i-2} i\sum_{j=0}^k \binom k ji^j \]

\[\sum_{j=0}^k\binom k j\sum_{i=0}^{\infty}\binom {n-i-2} ii^j \]

所以:

\[f_{n,k}=f_{n-1,k}+\sum_{j=0}^k\binom k jf_{n-2,j} \]

如果仔细点儿可以发现这里实际上是在说:

\[f_{n,k}=f_{n-1,k}+f_{n-2,k}+\sum_{j=0}^{k-1}\binom k jf_{n-2,j} \]

也就是说 $f_{i,j} $ 对 $ f_{n,k}$ 的贡献与斐波那契数列有关,为 \(\binom k jfib_{n-i-2}\)

接下来就很好办了。

\(F_k(x)=\sum_{i=0}^{\infty}f_{i,k}x^i\)

首先很明显,根据定义有 \(F_0(x)=\frac 1 {1-x-x^2}\)。(也就是斐波那契数列)

于是有:

\[F_k(x)=\frac {x^2} {1-x-x^2}\sum_{i=0}^{k-1}\binom k iF_i(x) \]

我们可以根据这个直接知道 \(F_1(x)=\frac 1 {(1-x-x^2)^2}\)

那么 \(F_2(x)\) 呢?

\[\frac {\binom 2 1}{(1-x-x^2)^3}+\frac {\binom 2 0}{(1-x-x^2)^2}=\frac {\binom 2 1+\binom 2 0(1-x-x^2)^1}{(1-x-x^2)^3} \]

合理猜测 \(F_k(x)\) 的分母为 \((1-x-x^2)^{k+1}\)

于是我们只维护分子,不维护分母。

那么分子所对应的递推式就应该是 \(H_k(x)=\frac {x^2}{1-x-x^2}\sum_{i=0}^{k-1}\binom k iH_i(x)(1-x-x^2)^{k-i}\)

于是我们使用类似秦九韶求多项式的值的方法可以做到 \(O(k^3)\) 处理出 \(H_0(x) \sim H_k(x)\),然后再使用常系数齐次线性递推算一下就是和比暴力矩快还慢的\(O((a+b)^3+a(a+b)^2\log n)\) 了。

第二种做法:我们可以列一个 DP 方程,然后用 BM 大力猜出递推式,就可以做到 \(O((a+b)^2\log n)\) 了,好耶!(这里根据直觉猜测递推式的长度就是 a+b)

推荐阅读