首页 > 技术文章 > POJ 3675 Telescope(简单多边形和圆的面积交)

oyking 2013-11-23 14:20 原文

Description

Updog is watching a plane object with a telescope. The field of vision in the telescope can be described as a circle. The center is at the origin and the radius is R. The object can be seen as a simple polygon of N vertexes. Updog wants to know the area of the part of the object that can be seen in the telescope.

Input

The input will contain several test cases. For each case:
The first line contains only one real number R
The second line contains an integer N. The following N lines contain two real numbers xi and yi each, which describe the coordinates of a vertex. Two vertexes in adjacent lines are also adjacent on the polygon. 
Constraints: 3 ≤ N ≤50, 0.1 ≤ R ≤1000, -1000 ≤ xiyi ≤ 1000

Output

For each test case, output one real number on a separate line, which is the area of the part that can be seen. The result should be rounded to two decimal places.

 
题目大意:给一个圆心在原点的圆,半径为r。再给一个简单多边形,问这个简单多边形和圆的公共面积是多少。
思路:跟POJ2986一个思路,把简单多边形的每一个点和原点连线,就把这个多边形和圆的交变成了多个三角形与圆的交,根据有向面积的思路,加加减减就可以得到公共面积。
PS:所谓简单多边形,是指所有边都不相交的多边形。
PS2:之前求直线与圆的交点的时候,没留意到-EPS<delta<0,然后要求sqrt(delta)的情况……WA了很多很多次……计算几何真是可怕……
 
代码(0MS):
  1 #include <cstdio>
  2 #include <cstring>
  3 #include <iostream>
  4 #include <algorithm>
  5 #include <cmath>
  6 using namespace std;
  7 #define sqr(x) ((x) * (x))
  8 
  9 const int MAXN = 55;
 10 const double EPS = 1e-10;
 11 const double PI = acos(-1.0);//3.14159265358979323846
 12 const double INF = 1;
 13 
 14 inline int sgn(double x) {
 15     return (x > EPS) - (x < -EPS);
 16 }
 17 
 18 struct Point {
 19     double x, y, ag;
 20     Point() {}
 21     Point(double x, double y): x(x), y(y) {}
 22     void read() {
 23         scanf("%lf%lf", &x, &y);
 24     }
 25     bool operator == (const Point &rhs) const {
 26         return sgn(x - rhs.x) == 0 && sgn(y - rhs.y) == 0;
 27     }
 28     bool operator < (const Point &rhs) const {
 29         if(y != rhs.y) return y < rhs.y;
 30         return x < rhs.x;
 31     }
 32     Point operator + (const Point &rhs) const {
 33         return Point(x + rhs.x, y + rhs.y);
 34     }
 35     Point operator - (const Point &rhs) const {
 36         return Point(x - rhs.x, y - rhs.y);
 37     }
 38     Point operator * (const double &b) const {
 39         return Point(x * b, y * b);
 40     }
 41     Point operator / (const double &b) const {
 42         return Point(x / b, y / b);
 43     }
 44     double operator * (const Point &rhs) const {
 45         return x * rhs.x + y * rhs.y;
 46     }
 47     double length() {
 48         return sqrt(x * x + y * y);
 49     }
 50     double angle() {
 51         return atan2(y, x);
 52     }
 53     Point unit() {
 54         return *this / length();
 55     }
 56     void makeAg() {
 57         ag = atan2(y, x);
 58     }
 59     void print() {
 60         printf("%.10f %.10f\n", x, y);
 61     }
 62 };
 63 typedef Point Vector;
 64 
 65 double dist(const Point &a, const Point &b) {
 66     return (a - b).length();
 67 }
 68 
 69 double cross(const Point &a, const Point &b) {
 70     return a.x * b.y - a.y * b.x;
 71 }
 72 //ret >= 0 means turn right
 73 double cross(const Point &sp, const Point &ed, const Point &op) {
 74     return cross(sp - op, ed - op);
 75 }
 76 
 77 double area(const Point& a, const Point &b, const Point &c) {
 78     return fabs(cross(a - c, b - c)) / 2;
 79 }
 80 //counter-clockwise
 81 Point rotate(const Point &p, double angle, const Point &o = Point(0, 0)) {
 82     Point t = p - o;
 83     double x = t.x * cos(angle) - t.y * sin(angle);
 84     double y = t.y * cos(angle) + t.x * sin(angle);
 85     return Point(x, y) + o;
 86 }
 87 
 88 double cosIncludeAngle(const Point &a, const Point &b, const Point &o) {
 89     Point p1 = a - o, p2 = b - o;
 90     return (p1 * p2) / (p1.length() * p2.length());
 91 }
 92 
 93 double includedAngle(const Point &a, const Point &b, const Point &o) {
 94     return acos(cosIncludeAngle(a, b, o));
 95     /*
 96     double ret = abs((a - o).angle() - (b - o).angle());
 97     if(sgn(ret - PI) > 0) ret = 2 * PI - ret;
 98     return ret;
 99     */
100 }
101 
102 struct Seg {
103     Point st, ed;
104     double ag;
105     Seg() {}
106     Seg(Point st, Point ed): st(st), ed(ed) {}
107     void read() {
108         st.read(); ed.read();
109     }
110     void makeAg() {
111         ag = atan2(ed.y - st.y, ed.x - st.x);
112     }
113 };
114 typedef Seg Line;
115 
116 //ax + by + c > 0
117 Line buildLine(double a, double b, double c) {
118     if(sgn(a) == 0 && sgn(b) == 0) return Line(Point(sgn(c) > 0 ? -1 : 1, INF), Point(0, INF));
119     if(sgn(a) == 0) return Line(Point(sgn(b), -c/b), Point(0, -c/b));
120     if(sgn(b) == 0) return Line(Point(-c/a, 0), Point(-c/a, sgn(a)));
121     if(b < 0) return Line(Point(0, -c/b), Point(1, -(a + c) / b));
122     else return Line(Point(1, -(a + c) / b), Point(0, -c/b));
123 }
124 
125 void moveRight(Line &v, double r) {
126     double dx = v.ed.x - v.st.x, dy = v.ed.y - v.st.y;
127     dx = dx / dist(v.st, v.ed) * r;
128     dy = dy / dist(v.st, v.ed) * r;
129     v.st.x += dy; v.ed.x += dy;
130     v.st.y -= dx; v.ed.y -= dx;
131 }
132 
133 bool isOnSeg(const Seg &s, const Point &p) {
134     return (p == s.st || p == s.ed) ||
135         (((p.x - s.st.x) * (p.x - s.ed.x) < 0 ||
136           (p.y - s.st.y) * (p.y - s.ed.y) < 0) &&
137          sgn(cross(s.ed, p, s.st)) == 0);
138 }
139 
140 bool isInSegRec(const Seg &s, const Point &p) {
141     return sgn(min(s.st.x, s.ed.x) - p.x) <= 0 && sgn(p.x - max(s.st.x, s.ed.x)) <= 0
142         && sgn(min(s.st.y, s.ed.y) - p.y) <= 0 && sgn(p.y - max(s.st.y, s.ed.y)) <= 0;
143 }
144 
145 bool isIntersected(const Point &s1, const Point &e1, const Point &s2, const Point &e2) {
146     return (max(s1.x, e1.x) >= min(s2.x, e2.x)) &&
147         (max(s2.x, e2.x) >= min(s1.x, e1.x)) &&
148         (max(s1.y, e1.y) >= min(s2.y, e2.y)) &&
149         (max(s2.y, e2.y) >= min(s1.y, e1.y)) &&
150         (cross(s2, e1, s1) * cross(e1, e2, s1) >= 0) &&
151         (cross(s1, e2, s2) * cross(e2, e1, s2) >= 0);
152 }
153 
154 bool isIntersected(const Seg &a, const Seg &b) {
155     return isIntersected(a.st, a.ed, b.st, b.ed);
156 }
157 
158 bool isParallel(const Seg &a, const Seg &b) {
159     return sgn(cross(a.ed - a.st, b.ed - b.st)) == 0;
160 }
161 
162 //return Ax + By + C =0 's A, B, C
163 void Coefficient(const Line &L, double &A, double &B, double &C) {
164     A = L.ed.y - L.st.y;
165     B = L.st.x - L.ed.x;
166     C = L.ed.x * L.st.y - L.st.x * L.ed.y;
167 }
168 //point of intersection
169 Point operator * (const Line &a, const Line &b) {
170     double A1, B1, C1;
171     double A2, B2, C2;
172     Coefficient(a, A1, B1, C1);
173     Coefficient(b, A2, B2, C2);
174     Point I;
175     I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
176     I.y =   (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
177     return I;
178 }
179 
180 bool isEqual(const Line &a, const Line &b) {
181     double A1, B1, C1;
182     double A2, B2, C2;
183     Coefficient(a, A1, B1, C1);
184     Coefficient(b, A2, B2, C2);
185     return sgn(A1 * B2 - A2 * B1) == 0 && sgn(A1 * C2 - A2 * C1) == 0 && sgn(B1 * C2 - B2 * C1) == 0;
186 }
187 
188 double Point_to_Line(const Point &p, const Line &L) {
189     return fabs(cross(p, L.st, L.ed)/dist(L.st, L.ed));
190 }
191 
192 double Point_to_Seg(const Point &p, const Seg &L) {
193     if(sgn((L.ed - L.st) * (p - L.st)) < 0) return dist(p, L.st);
194     if(sgn((L.st - L.ed) * (p - L.ed)) < 0) return dist(p, L.ed);
195     return Point_to_Line(p, L);
196 }
197 
198 double Seg_to_Seg(const Seg &a, const Seg &b) {
199     double ans1 = min(Point_to_Seg(a.st, b), Point_to_Seg(a.ed, b));
200     double ans2 = min(Point_to_Seg(b.st, a), Point_to_Seg(b.ed, a));
201     return min(ans1, ans2);
202 }
203 
204 struct Circle {
205     Point c;
206     double r;
207     Circle() {}
208     Circle(Point c, double r): c(c), r(r) {}
209     void read() {
210         c.read();
211         scanf("%lf", &r);
212     }
213     double area() const {
214         return PI * r * r;
215     }
216     bool contain(const Circle &rhs) const {
217         return sgn(dist(c, rhs.c) + rhs.r - r) <= 0;
218     }
219     bool contain(const Point &p) const {
220         return sgn(dist(c, p) - r) <= 0;
221     }
222     bool intersect(const Circle &rhs) const {
223         return sgn(dist(c, rhs.c) - r - rhs.r) < 0;
224     }
225     bool tangency(const Circle &rhs) const {
226         return sgn(dist(c, rhs.c) - r - rhs.r) == 0;
227     }
228     Point pos(double angle) const {
229         Point p = Point(c.x + r, c.y);
230         return rotate(p, angle, c);
231     }
232 };
233 
234 double CommonArea(const Circle &A, const Circle &B) {
235     double area = 0.0;
236     const Circle & M = (A.r > B.r) ? A : B;
237     const Circle & N = (A.r > B.r) ? B : A;
238     double D = dist(M.c, N.c);
239     if((D < M.r + N.r) && (D > M.r - N.r)) {
240         double cosM = (M.r * M.r + D * D - N.r * N.r) / (2.0 * M.r * D);
241         double cosN = (N.r * N.r + D * D - M.r * M.r) / (2.0 * N.r * D);
242         double alpha = 2 * acos(cosM);
243         double beta = 2 * acos(cosN);
244         double TM = 0.5 * M.r * M.r * (alpha - sin(alpha));
245         double TN = 0.5 * N.r * N.r * (beta - sin(beta));
246         area = TM + TN;
247     }
248     else if(D <= M.r - N.r) {
249         area = N.area();
250     }
251     return area;
252 }
253 
254 int intersection(const Seg &s, const Circle &cir, Point &p1, Point &p2) {
255     double angle = cosIncludeAngle(s.ed, cir.c, s.st);
256     //double angle1 = cos(includedAngle(s.ed, cir.c, s.st));
257     double B = dist(cir.c, s.st);
258     double a = 1, b = -2 * B * angle, c = sqr(B) - sqr(cir.r);
259     double delta = sqr(b) - 4 * a * c;
260     if(sgn(delta) < 0) return 0;
261     if(sgn(delta) == 0) delta = 0;
262     double x1 = (-b - sqrt(delta)) / (2 * a), x2 = (-b + sqrt(delta)) / (2 * a);
263     Vector v = (s.ed - s.st).unit();
264     p1 = s.st + v * x1;
265     p2 = s.st + v * x2;
266     return 1 + sgn(delta);
267 }
268 
269 double CommonArea(const Circle &cir, Point p1, Point p2) {
270     if(p1 == cir.c || p2 == cir.c) return 0;
271     if(cir.contain(p1) && cir.contain(p2)) {
272         return area(cir.c, p1, p2);
273     } else if(!cir.contain(p1) && !cir.contain(p2)) {
274         Point q1, q2;
275         int t = intersection(Line(p1, p2), cir, q1, q2);
276         if(t == 0) {
277             double angle = includedAngle(p1, p2, cir.c);
278             return 0.5 * sqr(cir.r) * angle;
279         } else {
280             double angle1 = includedAngle(p1, p2, cir.c);
281             double angle2 = includedAngle(q1, q2, cir.c);
282             if(isInSegRec(Seg(p1, p2), q1))return 0.5 * sqr(cir.r) * (angle1 - angle2 + sin(angle2));
283             else return 0.5 * sqr(cir.r) * angle1;
284         }
285     } else {
286         if(cir.contain(p2)) swap(p1, p2);
287         Point q1, q2;
288         intersection(Line(p1, p2), cir, q1, q2);
289         double angle = includedAngle(q2, p2, cir.c);
290         double a = area(cir.c, p1, q2);
291         double b = 0.5 * sqr(cir.r) * angle;
292         return a + b;
293     }
294 }
295 
296 struct Triangle {
297     Point p[3];
298     Triangle() {}
299     Triangle(Point *t) {
300         for(int i = 0; i < 3; ++i) p[i] = t[i];
301     }
302     void read() {
303         for(int i = 0; i < 3; ++i) p[i].read();
304     }
305     double area() const {
306         return ::area(p[0], p[1], p[2]);
307     }
308     Point& operator[] (int i) {
309         return p[i];
310     }
311 };
312 
313 double CommonArea(Triangle tir, const Circle &cir) {
314     double ret = 0;
315     ret += sgn(cross(tir[0], cir.c, tir[1])) * CommonArea(cir, tir[0], tir[1]);
316     ret += sgn(cross(tir[1], cir.c, tir[2])) * CommonArea(cir, tir[1], tir[2]);
317     ret += sgn(cross(tir[2], cir.c, tir[0])) * CommonArea(cir, tir[2], tir[0]);
318     return abs(ret);
319 }
320 
321 struct Poly {
322     int n;
323     Point p[MAXN];//p[n] = p[0]
324     void init(Point *pp, int nn) {
325         n = nn;
326         for(int i = 0; i < n; ++i) p[i] = pp[i];
327         p[n] = p[0];
328     }
329     double area() {
330         if(n < 3) return 0;
331         double s = p[0].y * (p[n - 1].x - p[1].x);
332         for(int i = 1; i < n; ++i)
333             s += p[i].y * (p[i - 1].x - p[i + 1].x);
334         return s / 2;
335     }
336 };
337 //the convex hull is clockwise
338 void Graham_scan(Point *p, int n, int *stk, int &top) {//stk[0] = stk[top]
339     sort(p, p + n);
340     top = 1;
341     stk[0] = 0; stk[1] = 1;
342     for(int i = 2; i < n; ++i) {
343         while(top && cross(p[i], p[stk[top]], p[stk[top - 1]]) <= 0) --top;
344         stk[++top] = i;
345     }
346     int len = top;
347     stk[++top] = n - 2;
348     for(int i = n - 3; i >= 0; --i) {
349         while(top != len && cross(p[i], p[stk[top]], p[stk[top - 1]]) <= 0) --top;
350         stk[++top] = i;
351     }
352 }
353 //use for half_planes_cross
354 bool cmpAg(const Line &a, const Line &b) {
355     if(sgn(a.ag - b.ag) == 0)
356         return sgn(cross(b.ed, a.st, b.st)) < 0;
357     return a.ag < b.ag;
358 }
359 //clockwise, plane is on the right
360 bool half_planes_cross(Line *v, int vn, Poly &res, Line *deq) {
361     int i, n;
362     sort(v, v + vn, cmpAg);
363     for(i = n = 1; i < vn; ++i) {
364         if(sgn(v[i].ag - v[i-1].ag) == 0) continue;
365         v[n++] = v[i];
366     }
367     int head = 0, tail = 1;
368     deq[0] = v[0], deq[1] = v[1];
369     for(i = 2; i < n; ++i) {
370         if(isParallel(deq[tail - 1], deq[tail]) || isParallel(deq[head], deq[head + 1]))
371             return false;
372         while(head < tail && sgn(cross(v[i].ed, deq[tail - 1] * deq[tail], v[i].st)) > 0)
373             --tail;
374         while(head < tail && sgn(cross(v[i].ed, deq[head] * deq[head + 1], v[i].st)) > 0)
375             ++head;
376         deq[++tail] = v[i];
377     }
378     while(head < tail && sgn(cross(deq[head].ed, deq[tail - 1] * deq[tail], deq[head].st)) > 0)
379         --tail;
380     while(head < tail && sgn(cross(deq[tail].ed, deq[head] * deq[head + 1], deq[tail].st)) > 0)
381         ++head;
382     if(tail <= head + 1) return false;
383     res.n = 0;
384     for(i = head; i < tail; ++i)
385         res.p[res.n++] = deq[i] * deq[i + 1];
386     res.p[res.n++] = deq[head] * deq[tail];
387     res.n = unique(res.p, res.p + res.n) - res.p;
388     res.p[res.n] = res.p[0];
389     return true;
390 }
391 
392 //ix and jx is the points whose distance is return, res.p[n - 1] = res.p[0], res must be clockwise
393 double dia_rotating_calipers(Poly &res, int &ix, int &jx) {
394     double dia = 0;
395     int q = 1;
396     for(int i = 0; i < res.n - 1; ++i) {
397         while(sgn(cross(res.p[i], res.p[q + 1], res.p[i + 1]) - cross(res.p[i], res.p[q], res.p[i + 1])) > 0)
398             q = (q + 1) % (res.n - 1);
399         if(sgn(dist(res.p[i], res.p[q]) - dia) > 0) {
400             dia = dist(res.p[i], res.p[q]);
401             ix = i; jx = q;
402         }
403         if(sgn(dist(res.p[i + 1], res.p[q]) - dia) > 0) {
404             dia = dist(res.p[i + 1], res.p[q]);
405             ix = i + 1; jx = q;
406         }
407     }
408     return dia;
409 }
410 //a and b must be clockwise, find the minimum distance between two convex hull
411 double half_rotating_calipers(Poly &a, Poly &b) {
412     int sa = 0, sb = 0;
413     for(int i = 0; i < a.n; ++i) if(sgn(a.p[i].y - a.p[sa].y) < 0) sa = i;
414     for(int i = 0; i < b.n; ++i) if(sgn(b.p[i].y - b.p[sb].y) < 0) sb = i;
415     double tmp, ans = dist(a.p[0], b.p[0]);
416     for(int i = 0; i < a.n; ++i) {
417         while(sgn(tmp = cross(a.p[sa], a.p[sa + 1], b.p[sb + 1]) - cross(a.p[sa], a.p[sa + 1], b.p[sb])) > 0)
418             sb = (sb + 1) % (b.n - 1);
419         if(sgn(tmp) < 0) ans = min(ans, Point_to_Seg(b.p[sb], Seg(a.p[sa], a.p[sa + 1])));
420         else ans = min(ans, Seg_to_Seg(Seg(a.p[sa], a.p[sa + 1]), Seg(b.p[sb], b.p[sb + 1])));
421         sa = (sa + 1) % (a.n - 1);
422     }
423     return ans;
424 }
425 
426 double rotating_calipers(Poly &a, Poly &b) {
427     return min(half_rotating_calipers(a, b), half_rotating_calipers(b, a));
428 }
429 
430 /*******************************************************************************************/
431 
432 Point p[MAXN];
433 Circle cir;
434 double r;
435 int n;
436 
437 int main() {
438     while(scanf("%lf", &r) != EOF) {
439         scanf("%d", &n);
440         for(int i = 0; i < n; ++i) p[i].read();
441         p[n] = p[0];
442         cir = Circle(Point(0, 0), r);
443         double ans = 0;
444         for(int i = 0; i < n; ++i)
445             ans += sgn(cross(p[i], Point(0, 0), p[i + 1])) * CommonArea(cir, p[i], p[i + 1]);
446         printf("%.2f\n", fabs(ans));
447     }
448 }
View Code

 

推荐阅读