首页 > 解决方案 > 在破坏 coq 相等性时证明(不完全)不相关

问题描述

我有一个依赖类型,它模拟过渡系统中的有限路径。转换系统有一个函数R,它产生一个命题,说明状态之间是否存在边s以及s'带有标签a。有限路径类型为:

  Inductive FinPathTail (s : S i) :=
  | FPTNil: FinPathTail s
  | FPTCons (a : Act i) (s' : S i) : R i s a s' ->
                                     FinPathTail s' -> FinPathTail s.

(“尾部”位是因为这实际上模拟了从 开始的路径的头部s除外)。

我已经为可能无限的 PathTail 定义了一个 CoInductive 类型(我会将它贴在底部以便更快地解决问题),并且我有一个函数,fpt_to_pt可以将 FinPathTail 转换为 PathTail。这应该“显然”是单射的,所以我想证明这种形式的引理:

Lemma fpt_to_pt_inj {s : S i} (fpt fpt' : FinPathTail s)
  : (forall s s' : S i, {s = s'} + {s <> s'}) ->
    fpt_to_pt fpt = fpt_to_pt fpt' -> fpt = fpt'.

当试图通过归纳来证明这一点时fpt,我很快就遇到了双方都被认为是 conses 的情况。目标最终看起来像:

PTCons s a s' r (fpt_to_pt fpt) = PTCons s a2 s'2 r2 (fpt_to_pt fpt') ->
FPTCons s a s' r fpt = FPTCons s a2 s'2 r2 fpt'

我想用injection战术分解。结果是这样的:

existT (fun s'0 : S i => PathTail s'0) s' (fpt_to_pt fpt) =
existT (fun s'0 : S i => PathTail s'0) s'2 (fpt_to_pt fpt') ->
s' = s'2 -> a = a2 -> FPTCons s a s' r fpt = FPTCons s a2 s'2 r2 fpt'

并使用 inversion_sigma 策略,我可以将其转换为:

B : s' = s'2
C : a = a2
A0 : s' = s'2
A1 : eq_rect s' (fun a : S i => PathTail a) (fpt_to_pt fpt) s'2 A0 = fpt_to_pt fpt'

我想我理解为什么我需要源域的可判定性才能使用inj_pair2_eq_dec. 我不明白的是:r 和 r2 发生了什么?我知道我没有证据无关紧要,但这是否意味着它们必须相等才能使 conses 相等?还是我误解了命题的基本原理?

PS:这是 PathTail 的共归纳定义:

CoInductive PathTail (s : S i) :=
| PTNil: PathTail s
| PTCons (a : Act i) (s' : S i) : R i s a s' -> PathTail s' -> PathTail s.

标签: coqdependent-type

解决方案


显然,默认情况下该策略会忽略证明之间的相等性,但您可以使用以下标志injection覆盖此行为:Keep Proof Equalities

Inductive foo : nat -> Prop :=
| Foo (n : nat) : foo n.

Inductive bar :=
| Bar (n : nat) : foo n -> bar.

Lemma test n nn m mm : Bar n nn = Bar m mm -> False.
Proof.
intros H. injection H. (* No equality generated. *)
Abort.

Set Keep Proof Equalities.

Lemma test n nn m mm : Bar n nn = Bar m mm -> False.
Proof.
intros H. injection H. (* Equality generated. *)
Abort.

推荐阅读