首页 > 解决方案 > 让 Idris 相信递归调用的整体性

问题描述

我编写了以下类型来编码其中所有可能的有理数:

data Number : Type where
    PosN : Nat -> Number
    Zero : Number
    NegN : Nat -> Number
    Ratio : Number -> Number -> Number

请注意,PosN Z实际上编码 number 1,而NegN Z编码-1. 我更喜欢这样的对称定义,而不是Data.ZZmodule 给出的定义。现在我很难说服 Idris 将这些数字相加是总数:

mul : Number -> Number -> Number
mul Zero _ = Zero
mul _ Zero = Zero
mul (PosN k) (PosN j) = PosN (S k * S j - 1)
mul (PosN k) (NegN j) = NegN (S k * S j - 1)
mul (NegN k) (PosN j) = NegN (S k * S j - 1)
mul (NegN k) (NegN j) = PosN (S k * S j - 1)
mul (Ratio a b) (Ratio c d) = Ratio (a `mul` b) (c `mul` d)
mul (Ratio a b) c = Ratio (a `mul` c) b
mul a (Ratio b c) = Ratio (a `mul` b) c

plus : Number -> Number -> Number
plus Zero y = y
plus x Zero = x
plus (PosN k) (PosN j) = PosN (k + j)
plus (NegN k) (NegN j) = NegN (k + j)
plus (PosN k) (NegN j) = subtractNat k j
plus (NegN k) (PosN j) = subtractNat j k
plus (Ratio a b) (Ratio c d) =
    let a' = assert_smaller (Ratio a b) a in
    let b' = assert_smaller (Ratio a b) b in
    let c' = assert_smaller (Ratio c d) c in
    let d' = assert_smaller (Ratio c d) d in
    Ratio ((mul a' d') `plus` (mul b' c')) (mul b' d')
plus (Ratio a b) c =
    let a' = assert_smaller (Ratio a b) a in
    let b' = assert_smaller (Ratio a b) b in
    Ratio (a' `plus` (mul b' c)) c
plus a (Ratio b c) =
    let b' = assert_smaller (Ratio b c) b in
    let c' = assert_smaller (Ratio b c) c in
    Ratio ((mul a c') `plus` b') (mul a c')

有趣的是,当我在 Atom 编辑器中按 Alt-Ctrl-R 时一切正常(即使使用%default total指令)。但是,当我将其加载到 REPL 中时,它会警告我这plus可能不是全部:

   |
29 |     plus Zero y = y
   |     ~~~~~~~~~~~~~~~
Data.Number.NumType.plus is possibly not total due to recursive path 
Data.Number.NumType.plus --> Data.Number.NumType.plus

从消息中我了解到它担心这些递归调用plus模式处理比率。我认为断言a小于Ratio a betc. 可以解决问题,但它没有,所以 Idris 可能看到了这一点,但遇到了其他问题。不过,我无法弄清楚它可能是什么。

标签: idristotality

解决方案


assert_smaller (Ratio a b) aIdris 已经知道(毕竟a是“更大”类型的参数)。Ratio a b您需要证明(或断言)的是 的结果在mul结构上小于plus.

所以它应该与

plus (Ratio a b) (Ratio c d) =
    let x = assert_smaller (Ratio a b) (mul a d) in
    let y = assert_smaller (Ratio a b) (mul b c) in
    Ratio (x `plus` y) (mul b d)
plus (Ratio a b) c =
    let y = assert_smaller (Ratio a b) (mul b c) in
    Ratio (a `plus` y) c
plus a (Ratio b c) =
    let x = assert_smaller (Ratio b c) (mul a c) in
    Ratio (x `plus` b) (mul a c)

推荐阅读