首页 > 解决方案 > “功能性”Rust 的性能影响是什么?

问题描述

我正在关注Exercism.io上的 Rust 轨道。我有相当多的 C/C++ 经验。我喜欢 Rust 的“功能”元素,但我担心相对性能。

我解决了“运行长度编码”问题

pub fn encode(source: &str) -> String {
    let mut retval = String::new();
    let firstchar = source.chars().next();
    let mut currentchar = match firstchar {
        Some(x) => x,
        None => return retval,
    };
    let mut currentcharcount: u32 = 0;
    for c in source.chars() {
        if c == currentchar {
            currentcharcount += 1;
        } else {
            if currentcharcount > 1 {
                retval.push_str(&currentcharcount.to_string());
            }
            retval.push(currentchar);
            currentchar = c;
            currentcharcount = 1;
        }
    }
    if currentcharcount > 1 {
        retval.push_str(&currentcharcount.to_string());
    }
    retval.push(currentchar);
    retval
}

我注意到其中一个评价最高的答案看起来更像这样:

extern crate itertools;

use itertools::Itertools;

pub fn encode(data: &str) -> String {
    data.chars()
        .group_by(|&c| c)
        .into_iter()
        .map(|(c, group)| match group.count() {
            1 => c.to_string(),
            n => format!("{}{}", n, c),
        })
        .collect()
}

我喜欢最受好评的解决方案;它简单、实用且优雅。这就是他们向我承诺的 Rust 的全部内容。另一方面,我的情况很严重,充满了可变变量。你可以说我已经习惯了 C++。

我的问题是功能样式具有显着的性能影响。我用相同的 4MB 随机数据编码 1000 次测试了这两个版本。我的命令式解决方案不到 10 秒;功能解决方案是~2mins30seconds。

标签: functional-programmingrustimperative-programming

解决方案


TL;博士

在某些情况下,功能实现可能比您的原始过程实现更快。

为什么函数式风格比命令式风格慢得多?导致如此巨大的减速的功能实现是否存在问题?

正如Matthieu M. 已经指出的那样,需要注意的重要一点是算法很重要。该算法的表达方式(过程式、命令式、面向对象、函数式、声明式)通常并不重要。

我看到功能代码的两个主要问题:

  • 一遍又一遍地分配大量字符串是低效的。在原始功能实现中,这是通过to_string和完成的format!

  • using 的开销是group_by为了提供一个嵌套的iterator,而你不需要它来获取计数。

使用更多的 itertools ( batching, take_while_ref, format_with) 使这两个实现更加接近:

pub fn encode_slim(data: &str) -> String {
    data.chars()
        .batching(|it| {
            it.next()
                .map(|v| (v, it.take_while_ref(|&v2| v2 == v).count() + 1))
        })
        .format_with("", |(c, count), f| match count {
            1 => f(&c),
            n => f(&format_args!("{}{}", n, c)),
        })
        .to_string()
}

4MiB 随机字母数字数据的基准,编译为RUSTFLAGS='-C target-cpu=native'

encode (procedural)     time:   [21.082 ms 21.620 ms 22.211 ms]

encode (fast)           time:   [26.457 ms 27.104 ms 27.882 ms]
Found 7 outliers among 100 measurements (7.00%)
  4 (4.00%) high mild
  3 (3.00%) high severe

如果您有兴趣创建自己的迭代器,可以将过程代码与更多功能代码混合搭配:

struct RunLength<I> {
    iter: I,
    saved: Option<char>,
}

impl<I> RunLength<I>
where
    I: Iterator<Item = char>,
{
    fn new(mut iter: I) -> Self {
        let saved = iter.next(); // See footnote 1
        Self { iter, saved }
    }
}

impl<I> Iterator for RunLength<I>
where
    I: Iterator<Item = char>,
{
    type Item = (char, usize);

    fn next(&mut self) -> Option<Self::Item> {
        let c = self.saved.take().or_else(|| self.iter.next())?;

        let mut count = 1;
        while let Some(n) = self.iter.next() {
            if n == c {
                count += 1
            } else {
                self.saved = Some(n);
                break;
            }
        }

        Some((c, count))
    }
}

pub fn encode_tiny(data: &str) -> String {
    use std::fmt::Write;

    RunLength::new(data.chars()).fold(String::new(), |mut s, (c, count)| {
        match count {
            1 => s.push(c),
            n => write!(&mut s, "{}{}", n, c).unwrap(),
        }
        s
    })
}

1 — 感谢Stargateur 指出急切地获取第一个值有助于分支预测。

4MiB 随机字母数字数据的基准,编译为RUSTFLAGS='-C target-cpu=native'

encode (procedural)     time:   [19.888 ms 20.301 ms 20.794 ms]
Found 4 outliers among 100 measurements (4.00%)
  3 (3.00%) high mild
  1 (1.00%) high severe

encode (tiny)           time:   [19.150 ms 19.262 ms 19.399 ms]
Found 11 outliers among 100 measurements (11.00%)
  5 (5.00%) high mild
  6 (6.00%) high severe

我相信这更清楚地显示了两种实现之间的主要根本区别:基于迭代器的解决方案是可恢复的。每次调用 时next,我们都需要查看是否有之前读过的字符 ( self.saved)。这会为程序代码中不存在的代码添加一个分支。

另一方面,基于迭代器的解决方案更加灵活——我们现在可以对数据进行各种转换,或者直接写入文件而不是 aString等。自定义迭代器可以扩展为对泛型类型进行操作而不是char同样,使其非常灵活。

也可以看看:

如果我想编写高性能代码,我应该使用这种函数式风格吗?

我会,直到基准测试表明这是瓶颈。然后评估为什么它是瓶颈。

支持代码

总是要展示你的作品,对吧?

基准.rs

use criterion::{criterion_group, criterion_main, Criterion}; // 0.2.11
use rle::*;

fn criterion_benchmark(c: &mut Criterion) {
    let data = rand_data(4 * 1024 * 1024);

    c.bench_function("encode (procedural)", {
        let data = data.clone();
        move |b| b.iter(|| encode_proc(&data))
    });

    c.bench_function("encode (functional)", {
        let data = data.clone();
        move |b| b.iter(|| encode_iter(&data))
    });

    c.bench_function("encode (fast)", {
        let data = data.clone();
        move |b| b.iter(|| encode_slim(&data))
    });

    c.bench_function("encode (tiny)", {
        let data = data.clone();
        move |b| b.iter(|| encode_tiny(&data))
    });
}

criterion_group!(benches, criterion_benchmark);
criterion_main!(benches);

库文件

use itertools::Itertools; // 0.8.0
use rand; // 0.6.5

pub fn rand_data(len: usize) -> String {
    use rand::distributions::{Alphanumeric, Distribution};
    let mut rng = rand::thread_rng();
    Alphanumeric.sample_iter(&mut rng).take(len).collect()
}

pub fn encode_proc(source: &str) -> String {
    let mut retval = String::new();
    let firstchar = source.chars().next();
    let mut currentchar = match firstchar {
        Some(x) => x,
        None => return retval,
    };
    let mut currentcharcount: u32 = 0;
    for c in source.chars() {
        if c == currentchar {
            currentcharcount += 1;
        } else {
            if currentcharcount > 1 {
                retval.push_str(&currentcharcount.to_string());
            }
            retval.push(currentchar);
            currentchar = c;
            currentcharcount = 1;
        }
    }
    if currentcharcount > 1 {
        retval.push_str(&currentcharcount.to_string());
    }
    retval.push(currentchar);
    retval
}

pub fn encode_iter(data: &str) -> String {
    data.chars()
        .group_by(|&c| c)
        .into_iter()
        .map(|(c, group)| match group.count() {
            1 => c.to_string(),
            n => format!("{}{}", n, c),
        })
        .collect()
}

pub fn encode_slim(data: &str) -> String {
    data.chars()
        .batching(|it| {
            it.next()
                .map(|v| (v, it.take_while_ref(|&v2| v2 == v).count() + 1))
        })
        .format_with("", |(c, count), f| match count {
            1 => f(&c),
            n => f(&format_args!("{}{}", n, c)),
        })
        .to_string()
}

struct RunLength<I> {
    iter: I,
    saved: Option<char>,
}

impl<I> RunLength<I>
where
    I: Iterator<Item = char>,
{
    fn new(mut iter: I) -> Self {
        let saved = iter.next();
        Self { iter, saved }
    }
}

impl<I> Iterator for RunLength<I>
where
    I: Iterator<Item = char>,
{
    type Item = (char, usize);

    fn next(&mut self) -> Option<Self::Item> {
        let c = self.saved.take().or_else(|| self.iter.next())?;

        let mut count = 1;
        while let Some(n) = self.iter.next() {
            if n == c {
                count += 1
            } else {
                self.saved = Some(n);
                break;
            }
        }

        Some((c, count))
    }
}

pub fn encode_tiny(data: &str) -> String {
    use std::fmt::Write;

    RunLength::new(data.chars()).fold(String::new(), |mut s, (c, count)| {
        match count {
            1 => s.push(c),
            n => write!(&mut s, "{}{}", n, c).unwrap(),
        }
        s
    })
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn all_the_same() {
        let data = rand_data(1024);

        let a = encode_proc(&data);
        let b = encode_iter(&data);
        let c = encode_slim(&data);
        let d = encode_tiny(&data);

        assert_eq!(a, b);
        assert_eq!(a, c);
        assert_eq!(a, d);
    }
}

推荐阅读