首页 > 解决方案 > 在两个相同的 Skylake Xeon Gold 6154 系统上测量到不同的内核间延迟

问题描述

我们一直在使用两台相同的 Skylake 服务器,它们的软件、Centos 7 操作系统和 BIOS 设置完全相同。一切都是一样的,除了延迟性能。我们的软件使用的是 AVX512。

在测试中,我注意到 AVX512 每次都会降低其中一个系统的性能(增加延迟)。存在显着的性能差异。我检查了一切,都是一样的。

我应该怎么做才能解决这个问题?哪个工具可以提供帮助?

提前致谢..

sudo lshw -class cpu
  *-cpu:0                   
       description: CPU
       product: Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz
       vendor: Intel Corp.
       vendor_id: GenuineIntel
       physical id: 400
       bus info: cpu@0
       version: Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz
       slot: CPU1
       size: 3GHz
       capacity: 4GHz
       width: 64 bits
       clock: 1010MHz
       capabilities: lm fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp x86-64 constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch epb cat_l3 cdp_l3 intel_ppin intel_pt ssbd mba ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke md_clear spec_ctrl intel_stibp flush_l1d
       configuration: cores=18 enabledcores=18 threads=18
  *-cpu:1 DISABLED
       description: CPU [empty]
       physical id: 401
       slot: CPU2

更新:在彼得的评论之后,我添加了以下示例代码作为示例。

#include <emmintrin.h>
#include <pthread.h>
#include <immintrin.h>
#include <unistd.h>
#include <inttypes.h>
#include <string.h>
#include <stdbool.h>
#include <stdio.h>

#define CACHE_LINE_SIZE             64

/**
 * Copy 64 bytes from one location to another,
 * locations should not overlap.
 */
static inline __attribute__((always_inline)) void
mov64(uint8_t *dst, const uint8_t *src)
{
        __m512i zmm0;

        zmm0 = _mm512_load_si512((const void *)src);
        _mm512_store_si512((void *)dst, zmm0);
}

#define likely(x)    __builtin_expect((x), 1)
#define unlikely(x)  __builtin_expect((x), 0)

static inline uint64_t rdtsc(void)
{
    union {
        uint64_t tsc_64;
        __extension__
        struct {
            uint32_t lo_32;
            uint32_t hi_32;
        };
    } tsc;

    __asm__ volatile("rdtsc" :
            "=a" (tsc.lo_32),
            "=d" (tsc.hi_32));
    return tsc.tsc_64;
}
union levels {
    __m512i zmm0;
    struct {
        uint32_t x1;
        uint64_t x2;
        uint64_t x3;
        uint32_t x4;
        uint32_t x5;
        uint32_t x6;
        uint32_t x7;
    };
} __attribute__((aligned(CACHE_LINE_SIZE)));

union levels g_shared;

void *worker_loop(void *param)
{
    cpu_set_t cpuset;
    CPU_ZERO(&cpuset);
    CPU_SET(16, &cpuset);

    pthread_t thread = pthread_self();

    pthread_setaffinity_np(thread, sizeof(cpu_set_t), &cpuset);

    union levels lshared;
    uint32_t old_x1 = 0;
    lshared.x1 = 0;
    while (1) {
        __asm__ ("" ::: "memory");

        lshared.zmm0 = _mm512_load_si512((const void *)&g_shared);

        if (unlikely(lshared.x1 <= old_x1)) {
            continue;
        } else if (unlikely(lshared.x1 != lshared.x7)) {
            // printf("%u %u %u %u %u %u\n", lshared.x1, lshared.x3, lshared.x4, lshared.x5, lshared.x6, lshared.x7);
            exit(EXIT_FAILURE);
        } else {
            uint64_t val = rdtsc();
            if (val > lshared.x2) {
                printf("> (%u) %lu - %lu = %lu\n", lshared.x1, val, lshared.x2, val - lshared.x2);
            } else {
                printf("< (%u) %lu - %lu = %lu\n", lshared.x1, lshared.x2, val, lshared.x2 - val);
            }
        }
        old_x1 = lshared.x1;

        _mm_pause();
    }

    return NULL;
}

int main(int argc, char *argv[])
{
    cpu_set_t cpuset;
    CPU_ZERO(&cpuset);
    CPU_SET(15, &cpuset);

    pthread_t thread = pthread_self();

    memset(&g_shared, 0, sizeof(g_shared));

    pthread_setaffinity_np(thread, sizeof(cpu_set_t), &cpuset);

    pthread_t worker;
    pthread_create(&worker, NULL, worker_loop, NULL);

    uint32_t val = 1;
    union levels lshared;

    while (1) {
        lshared.x1 = val;
        lshared.x2 = rdtsc();
        lshared.x3 = val;
        lshared.x4 = val;
        lshared.x5 = val;
        lshared.x6 = val;
        lshared.x7 = val;
        _mm512_store_si512((void *)&g_shared, lshared.zmm0);
        __asm__ ("" ::: "memory");

        usleep(100000);

        val++;

        _mm_pause();
    }

    return EXIT_SUCCESS;
}

较慢系统的输出:

> (1) 4582365777844442 - 4582365777792564 = 51878
> (2) 4582366077239290 - 4582366077238806 = 484
> (3) 4582366376674782 - 4582366376674346 = 436
> (4) 4582366676044526 - 4582366676041890 = 2636
> (5) 4582366975470562 - 4582366975470134 = 428
> (6) 4582367274899258 - 4582367274898828 = 430
> (7) 4582367574328446 - 4582367574328022 = 424
> (8) 4582367873757956 - 4582367873757532 = 424
> (9) 4582368173187886 - 4582368173187466 = 420
> (10) 4582368472618418 - 4582368472617958 = 460
> (11) 4582368772049720 - 4582368772049236 = 484
> (12) 4582369071481018 - 4582369071480594 = 424
> (13) 4582369370912760 - 4582369370912284 = 476
> (14) 4582369670344890 - 4582369670344212 = 678
> (15) 4582369969776826 - 4582369969776400 = 426
> (16) 4582370269209462 - 4582370269209024 = 438
> (17) 4582370568642626 - 4582370568642172 = 454
> (18) 4582370868076202 - 4582370868075764 = 438
> (19) 4582371167510016 - 4582371167509594 = 422
> (20) 4582371466944326 - 4582371466943892 = 434
> (21) 4582371766379206 - 4582371766378734 = 472
> (22) 4582372065814804 - 4582372065814344 = 460
> (23) 4582372365225608 - 4582372365223068 = 2540
> (24) 4582372664652112 - 4582372664651668 = 444
> (25) 4582372964080746 - 4582372964080314 = 432
> (26) 4582373263510732 - 4582373263510308 = 424
> (27) 4582373562940116 - 4582373562939676 = 440
> (28) 4582373862370284 - 4582373862369860 = 424
> (29) 4582374161800632 - 4582374161800182 = 450

更快的系统输出:

> (1) 9222001841102298 - 9222001841045386 = 56912
> (2) 9222002140513228 - 9222002140512908 = 320
> (3) 9222002439970702 - 9222002439970330 = 372
> (4) 9222002739428448 - 9222002739428114 = 334
> (5) 9222003038886492 - 9222003038886152 = 340
> (6) 9222003338344884 - 9222003338344516 = 368
> (7) 9222003637803702 - 9222003637803332 = 370
> (8) 9222003937262776 - 9222003937262404 = 372
> (9) 9222004236649320 - 9222004236648932 = 388
> (10) 9222004536101876 - 9222004536101510 = 366
> (11) 9222004835554776 - 9222004835554378 = 398
> (12) 9222005135008064 - 9222005135007686 = 378
> (13) 9222005434461868 - 9222005434461526 = 342
> (14) 9222005733916416 - 9222005733916026 = 390
> (15) 9222006033370968 - 9222006033370640 = 328
> (16) 9222006332825872 - 9222006332825484 = 388
> (17) 9222006632280956 - 9222006632280570 = 386
> (18) 9222006931736548 - 9222006931736178 = 370
> (19) 9222007231192376 - 9222007231191986 = 390
> (20) 9222007530648868 - 9222007530648486 = 382
> (21) 9222007830105642 - 9222007830105270 = 372
> (22) 9222008129562750 - 9222008129562382 = 368
> (23) 9222008429020310 - 9222008429019944 = 366
> (24) 9222008728478336 - 9222008728477970 = 366
> (25) 9222009027936696 - 9222009027936298 = 398
> (26) 9222009327395716 - 9222009327395342 = 374
> (27) 9222009626854876 - 9222009626854506 = 370
> (28) 9222009926282324 - 9222009926281936 = 388
> (29) 9222010225734832 - 9222010225734442 = 390
> (30) 9222010525187748 - 9222010525187366 = 382

更新2:在彼得的回答之后,我添加了以下示例代码作为示例,以测量同一裸片上不同网状网络路径的延迟,答案的内容是正确的,不同的cpu具有不同的cpu间延迟。但在所有情况下,相同系统中的一个仍然比另一个慢 25%。

另外我不知道它是否会影响它,但我刚刚意识到慢速 CPU 有额外的md_clear标志。

总之,我应该怎么做才能解决这个问题?哪个工具可以提供帮助?我如何理解性能差异?

#include <emmintrin.h>
#include <pthread.h>
#include <immintrin.h>
#include <unistd.h>
#include <inttypes.h>
#include <string.h>
#include <stdbool.h>
#include <stdio.h>

#define CACHE_LINE_SIZE             64

/**
 * Copy 64 bytes from one location to another,
 * locations should not overlap.
 */
static inline __attribute__((always_inline)) void
mov64(uint8_t *dst, const uint8_t *src)
{
        __m512i zmm0;

        zmm0 = _mm512_load_si512((const void *)src);
        _mm512_store_si512((void *)dst, zmm0);
}

#define likely(x)    __builtin_expect((x), 1)
#define unlikely(x)  __builtin_expect((x), 0)

static inline uint64_t rdtsc(void)
{
    union {
        uint64_t tsc_64;
        __extension__
        struct {
            uint32_t lo_32;
            uint32_t hi_32;
        };
    } tsc;

    __asm__ volatile("rdtsc" :
            "=a" (tsc.lo_32),
            "=d" (tsc.hi_32));
    return tsc.tsc_64;
}
union levels {
    __m512i zmm0;
    struct {
        uint32_t x1;
        uint64_t x2;
        uint64_t x3;
        uint32_t x4;
        uint32_t x5;
        uint32_t x6;
        uint32_t x7;
    };
} __attribute__((aligned(CACHE_LINE_SIZE)));

union levels g_shared;

uint32_t g_main_cpu;
uint32_t g_worker_cpu;

void *worker_loop(void *param)
{
    _mm_mfence();

    cpu_set_t cpuset;
    CPU_ZERO(&cpuset);
    CPU_SET(g_worker_cpu, &cpuset);

    pthread_t thread = pthread_self();

    pthread_setaffinity_np(thread, sizeof(cpu_set_t), &cpuset);

    union levels lshared;
    uint32_t old_x1 = 1;

    uint64_t min = 10000, max = 0, sum = 0;

    int i = 0;
    while (i < 300) {
        __asm__ ("" ::: "memory");
        lshared.zmm0 = _mm512_load_si512((const void *)&g_shared);

        if (unlikely(lshared.x1 <= old_x1)) {
            continue;
        } else if (unlikely(lshared.x1 != lshared.x7)) {
            exit(EXIT_FAILURE);
        } else {
            uint64_t val = rdtsc();
            uint64_t diff = val - lshared.x2;
            sum += diff;
            if (min > diff)
                min = diff;

            if (diff > max)
                max = diff;

            i++;
        }
        old_x1 = lshared.x1;

        _mm_pause();
    }

    printf("(M=%u-W=%u) min=%lu max=%lu mean=%lu\n", g_main_cpu, g_worker_cpu, min, max, sum / 300);

    return NULL;
}

int main(int argc, char *argv[])
{
    for (int main_cpu = 2; main_cpu <= 17; ++main_cpu) {
        for (int worker_cpu = 2; worker_cpu <= 17; ++worker_cpu) {
            if (main_cpu == worker_cpu) {
                continue;
            }
            _mm_mfence();

            g_main_cpu = main_cpu;
            g_worker_cpu = worker_cpu;

            cpu_set_t cpuset;
            CPU_ZERO(&cpuset);
            CPU_SET(g_main_cpu, &cpuset);

            pthread_t thread = pthread_self();

            memset(&g_shared, 0, sizeof(g_shared));

            pthread_setaffinity_np(thread, sizeof(cpu_set_t), &cpuset);

            pthread_t worker;
            pthread_create(&worker, NULL, worker_loop, NULL);

            uint32_t val = 0;
            union levels lshared;

            for (int i = 0; i < 350; ++i) {
                lshared.x1 = val;
                lshared.x2 = rdtsc();
                lshared.x3 = val;
                lshared.x4 = val;
                lshared.x5 = val;
                lshared.x6 = val;
                lshared.x7 = val;
                _mm512_store_si512((void *)&g_shared, lshared.zmm0);
                __asm__ ("" ::: "memory");

                usleep(100000);

                val++;

                _mm_pause();
            }

            pthread_join(worker, NULL);
        }
    }

    return EXIT_SUCCESS;
}

两个系统的输出:(2-17是隔离cpu)

            slow cpu    fast cpu
------------------------------------                

(M=2-W=3)   mean=580    mean=374
(M=2-W=4)   mean=463    mean=365
(M=2-W=5)   mean=449    mean=391
(M=2-W=6)   mean=484    mean=345
(M=2-W=7)   mean=430    mean=386
(M=2-W=8)   mean=439    mean=369
(M=2-W=9)   mean=445    mean=376
(M=2-W=10)  mean=480    mean=354
(M=2-W=11)  mean=440    mean=392
(M=2-W=12)  mean=475    mean=324
(M=2-W=13)  mean=453    mean=373
(M=2-W=14)  mean=474    mean=344
(M=2-W=15)  mean=445    mean=384
(M=2-W=16)  mean=468    mean=372
(M=2-W=17)  mean=462    mean=373
(M=3-W=2)   mean=447    mean=392
(M=3-W=4)   mean=556    mean=386
(M=3-W=5)   mean=418    mean=409
(M=3-W=6)   mean=473    mean=372
(M=3-W=7)   mean=397    mean=400
(M=3-W=8)   mean=408    mean=403
(M=3-W=9)   mean=412    mean=413
(M=3-W=10)  mean=447    mean=389
(M=3-W=11)  mean=412    mean=423
(M=3-W=12)  mean=446    mean=399
(M=3-W=13)  mean=427    mean=407
(M=3-W=14)  mean=445    mean=390
(M=3-W=15)  mean=417    mean=448
(M=3-W=16)  mean=438    mean=386
(M=3-W=17)  mean=435    mean=396
(M=4-W=2)   mean=463    mean=368
(M=4-W=3)   mean=433    mean=401
(M=4-W=5)   mean=561    mean=406
(M=4-W=6)   mean=468    mean=378
(M=4-W=7)   mean=416    mean=387
(M=4-W=8)   mean=425    mean=386
(M=4-W=9)   mean=425    mean=415
(M=4-W=10)  mean=464    mean=379
(M=4-W=11)  mean=424    mean=404
(M=4-W=12)  mean=456    mean=369
(M=4-W=13)  mean=441    mean=395
(M=4-W=14)  mean=460    mean=378
(M=4-W=15)  mean=427    mean=405
(M=4-W=16)  mean=446    mean=369
(M=4-W=17)  mean=448    mean=391
(M=5-W=2)   mean=447    mean=382
(M=5-W=3)   mean=418    mean=406
(M=5-W=4)   mean=430    mean=397
(M=5-W=6)   mean=584    mean=386
(M=5-W=7)   mean=399    mean=399
(M=5-W=8)   mean=404    mean=386
(M=5-W=9)   mean=408    mean=408
(M=5-W=10)  mean=446    mean=378
(M=5-W=11)  mean=411    mean=407
(M=5-W=12)  mean=440    mean=385
(M=5-W=13)  mean=424    mean=402
(M=5-W=14)  mean=442    mean=381
(M=5-W=15)  mean=411    mean=411
(M=5-W=16)  mean=433    mean=398
(M=5-W=17)  mean=429    mean=395
(M=6-W=2)   mean=486    mean=356
(M=6-W=3)   mean=453    mean=388
(M=6-W=4)   mean=471    mean=353
(M=6-W=5)   mean=452    mean=388
(M=6-W=7)   mean=570    mean=360
(M=6-W=8)   mean=444    mean=377
(M=6-W=9)   mean=450    mean=376
(M=6-W=10)  mean=485    mean=335
(M=6-W=11)  mean=451    mean=410
(M=6-W=12)  mean=479    mean=353
(M=6-W=13)  mean=463    mean=363
(M=6-W=14)  mean=479    mean=359
(M=6-W=15)  mean=450    mean=394
(M=6-W=16)  mean=473    mean=364
(M=6-W=17)  mean=469    mean=373
(M=7-W=2)   mean=454    mean=365
(M=7-W=3)   mean=418    mean=410
(M=7-W=4)   mean=443    mean=370
(M=7-W=5)   mean=421    mean=407
(M=7-W=6)   mean=456    mean=363
(M=7-W=8)   mean=527    mean=380
(M=7-W=9)   mean=417    mean=392
(M=7-W=10)  mean=460    mean=361
(M=7-W=11)  mean=421    mean=402
(M=7-W=12)  mean=447    mean=354
(M=7-W=13)  mean=430    mean=381
(M=7-W=14)  mean=449    mean=375
(M=7-W=15)  mean=420    mean=393
(M=7-W=16)  mean=442    mean=352
(M=7-W=17)  mean=438    mean=367
(M=8-W=2)   mean=463    mean=382
(M=8-W=3)   mean=434    mean=411
(M=8-W=4)   mean=452    mean=372
(M=8-W=5)   mean=429    mean=402
(M=8-W=6)   mean=469    mean=368
(M=8-W=7)   mean=416    mean=418
(M=8-W=9)   mean=560    mean=418
(M=8-W=10)  mean=468    mean=385
(M=8-W=11)  mean=429    mean=394
(M=8-W=12)  mean=460    mean=378
(M=8-W=13)  mean=439    mean=392
(M=8-W=14)  mean=459    mean=373
(M=8-W=15)  mean=429    mean=383
(M=8-W=16)  mean=452    mean=376
(M=8-W=17)  mean=449    mean=401
(M=9-W=2)   mean=440    mean=368
(M=9-W=3)   mean=410    mean=398
(M=9-W=4)   mean=426    mean=385
(M=9-W=5)   mean=406    mean=403
(M=9-W=6)   mean=447    mean=378
(M=9-W=7)   mean=393    mean=427
(M=9-W=8)   mean=408    mean=368
(M=9-W=10)  mean=580    mean=392
(M=9-W=11)  mean=408    mean=387
(M=9-W=12)  mean=433    mean=381
(M=9-W=13)  mean=418    mean=444
(M=9-W=14)  mean=441    mean=407
(M=9-W=15)  mean=408    mean=401
(M=9-W=16)  mean=427    mean=376
(M=9-W=17)  mean=426    mean=383
(M=10-W=2)  mean=478    mean=361
(M=10-W=3)  mean=446    mean=379
(M=10-W=4)  mean=461    mean=350
(M=10-W=5)  mean=445    mean=373
(M=10-W=6)  mean=483    mean=354
(M=10-W=7)  mean=428    mean=370
(M=10-W=8)  mean=436    mean=355
(M=10-W=9)  mean=448    mean=390
(M=10-W=11) mean=569    mean=350
(M=10-W=12) mean=473    mean=337
(M=10-W=13) mean=454    mean=370
(M=10-W=14) mean=474    mean=360
(M=10-W=15) mean=441    mean=370
(M=10-W=16) mean=463    mean=354
(M=10-W=17) mean=462    mean=358
(M=11-W=2)  mean=447    mean=384
(M=11-W=3)  mean=411    mean=408
(M=11-W=4)  mean=433    mean=394
(M=11-W=5)  mean=413    mean=428
(M=11-W=6)  mean=455    mean=383
(M=11-W=7)  mean=402    mean=395
(M=11-W=8)  mean=407    mean=418
(M=11-W=9)  mean=417    mean=424
(M=11-W=10) mean=452    mean=395
(M=11-W=12) mean=577    mean=406
(M=11-W=13) mean=426    mean=402
(M=11-W=14) mean=442    mean=412
(M=11-W=15) mean=408    mean=411
(M=11-W=16) mean=435    mean=400
(M=11-W=17) mean=431    mean=415
(M=12-W=2)  mean=473    mean=352
(M=12-W=3)  mean=447    mean=381
(M=12-W=4)  mean=461    mean=361
(M=12-W=5)  mean=445    mean=366
(M=12-W=6)  mean=483    mean=322
(M=12-W=7)  mean=431    mean=358
(M=12-W=8)  mean=438    mean=340
(M=12-W=9)  mean=448    mean=409
(M=12-W=10) mean=481    mean=334
(M=12-W=11) mean=447    mean=351
(M=12-W=13) mean=580    mean=383
(M=12-W=14) mean=473    mean=359
(M=12-W=15) mean=441    mean=385
(M=12-W=16) mean=463    mean=355
(M=12-W=17) mean=462    mean=358
(M=13-W=2)  mean=450    mean=385
(M=13-W=3)  mean=420    mean=410
(M=13-W=4)  mean=440    mean=396
(M=13-W=5)  mean=418    mean=402
(M=13-W=6)  mean=461    mean=385
(M=13-W=7)  mean=406    mean=391
(M=13-W=8)  mean=415    mean=382
(M=13-W=9)  mean=421    mean=402
(M=13-W=10) mean=457    mean=376
(M=13-W=11) mean=422    mean=409
(M=13-W=12) mean=451    mean=381
(M=13-W=14) mean=579    mean=375
(M=13-W=15) mean=430    mean=402
(M=13-W=16) mean=440    mean=408
(M=13-W=17) mean=439    mean=394
(M=14-W=2)  mean=477    mean=330
(M=14-W=3)  mean=449    mean=406
(M=14-W=4)  mean=464    mean=355
(M=14-W=5)  mean=450    mean=389
(M=14-W=6)  mean=487    mean=342
(M=14-W=7)  mean=432    mean=380
(M=14-W=8)  mean=439    mean=360
(M=14-W=9)  mean=451    mean=405
(M=14-W=10) mean=485    mean=356
(M=14-W=11) mean=447    mean=398
(M=14-W=12) mean=479    mean=338
(M=14-W=13) mean=455    mean=382
(M=14-W=15) mean=564    mean=383
(M=14-W=16) mean=481    mean=361
(M=14-W=17) mean=465    mean=351
(M=15-W=2)  mean=426    mean=409
(M=15-W=3)  mean=395    mean=424
(M=15-W=4)  mean=412    mean=427
(M=15-W=5)  mean=395    mean=425
(M=15-W=6)  mean=435    mean=391
(M=15-W=7)  mean=379    mean=405
(M=15-W=8)  mean=388    mean=412
(M=15-W=9)  mean=399    mean=432
(M=15-W=10) mean=432    mean=389
(M=15-W=11) mean=397    mean=432
(M=15-W=12) mean=426    mean=393
(M=15-W=13) mean=404    mean=407
(M=15-W=14) mean=429    mean=412
(M=15-W=16) mean=539    mean=391
(M=15-W=17) mean=414    mean=397
(M=16-W=2)  mean=456    mean=368
(M=16-W=3)  mean=422    mean=406
(M=16-W=4)  mean=445    mean=384
(M=16-W=5)  mean=427    mean=397
(M=16-W=6)  mean=462    mean=348
(M=16-W=7)  mean=413    mean=408
(M=16-W=8)  mean=419    mean=361
(M=16-W=9)  mean=429    mean=385
(M=16-W=10) mean=463    mean=369
(M=16-W=11) mean=426    mean=404
(M=16-W=12) mean=454    mean=391
(M=16-W=13) mean=434    mean=378
(M=16-W=14) mean=454    mean=412
(M=16-W=15) mean=424    mean=416
(M=16-W=17) mean=578    mean=378
(M=17-W=2)  mean=460    mean=402
(M=17-W=3)  mean=419    mean=381
(M=17-W=4)  mean=446    mean=394
(M=17-W=5)  mean=424    mean=422
(M=17-W=6)  mean=468    mean=369
(M=17-W=7)  mean=409    mean=401
(M=17-W=8)  mean=418    mean=405
(M=17-W=9)  mean=428    mean=414
(M=17-W=10) mean=459    mean=369
(M=17-W=11) mean=424    mean=387
(M=17-W=12) mean=451    mean=372
(M=17-W=13) mean=435    mean=382
(M=17-W=14) mean=459    mean=369
(M=17-W=15) mean=426    mean=401
(M=17-W=16) mean=446    mean=371

标签: cperformancex86-64intelavx512

解决方案


我的猜测:不同的Xeon Gold 6154芯片 (18c 36t) 有不同的内核因缺陷而融合,因此您在固定到的两个内核和/或缓存线最终成为的 L3 缓存片之间有不同的网状网络路径映射到。这会影响这两个内核之间的内核间延迟。

根据 Wikichip 的说法,它基于 SKX 的“Extreme Core Count die” ,上面有 28 个物理内核, Xeon Platinum 8176的内核数基于相同的 die。

因此,您的芯片上禁用了 10 个内核,但可能有 10 个不同。这可能意味着某些内核之间的跳数更多(也许)?和/或这可能意味着核心以不同的顺序枚举,因此相同的硬编码核心编号意味着不同的网格位置。

https://en.wikichip.org/wiki/intel/mesh_interconnect_architecture


您的更新显示来自所有核心对的新数据。 对于大多数但不是所有对而言,一个 CPU 似乎较慢。(尽管如果您使用平均值而不丢弃异常值,我并不完全相信该数据。)这仍然可以通过不同的网格布局合理地解释,可能大多数核心之间的距离明显更差。

它是一个 2D 网格,可能反映了内核的物理布局。也许快速 CPU 的外部内核大多被禁用,因此活动的 CPU 相当密集地封装在一个较小的网格中。但也许较慢的那个在网格中的更多“内部”核心中存在缺陷。

我刚刚意识到慢速 CPU 有额外的md_clearCPU 功能标志。

根据https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling,该标志表示微码支持通过指令md_clear对 L1TF/微架构数据采样的变通办法verw, ETC。

也许较新的微代码版本还有另一个更改,会损害此微基准测试(可能是整体)的性能。或者也许这是一个巧合。

来自更多具有较旧和较新微码的 Xeon Gold CPU 的更多数据可能会有所启发。如果即使使用相同的微码,我们仍然看到 CPU 之间存在如此大的差异,那将支持我的假设,即物理内核被融合为 28 核芯片作为 18 工作核 CPU 出售的结果。

此外,在基于较小芯片的 Xeon 上进行测试,例如启用所有 14 个内核的 14 核 HCC 芯片,可能会显示更好的最坏情况对内核间延迟。可能需要控制不同的 RDTSC、turbo 和非核心频率,除非网格时钟与参考核心时钟一起缩放。


这种解释根本不依赖于 AVX512。您是否看到与标量负载相同的效果?

此外,可能一个小的时间差碰巧对一个比另一个没有的影响更差_mm_pause;也许一个核心正在看到管道核弹(machine_clears.memory_orderingperf 事件),而另一个没有?

您的更新_mm_pause()主要排除了放大真实延迟的微小差异。不管是什么原因,差异似乎确实如此之大。


您的 CPU 足够新,可以安全地假设 TSC 在内核之间同步,并且可能两者都已经以最大 turbo 运行。(命名的 CPU 功能之一,constant_tscinvariant_tsc明确保证,但我忘记了哪一个。另一个意味着它以固定的参考频率滴答,而不管核心时钟频率如何。 nonstop_tsc意味着它不会在核心睡眠时停止。)

(TL:DR:我认为您的微基准看起来很理智,并且您正在以合理的方式测量内核间延迟,而没有巨大的测量误差。)


我应该怎么做才能解决这个问题?

你不能。

如果低核间延迟对一个应用程序至关重要,请尝试几个不同的 CPU,直到找到一个延迟低于平均水平的 CPU。

在 Xeon 上运行延迟更短的其他应用程序。

或者,如果我的假设是正确的,也许会得到一个基于高核数芯片的 14 核 Xeon Gold。启用所有 14 个内核后,这应该是最好的情况。但那些至强只有 1 个 AVX512 FMA 单元。

哪个工具可以提供帮助?

如果只有少数线程需要紧密耦合,请在您拥有的 CPU 上找到彼此延迟最低的物理内核集群。将对延迟最敏感的线程固定到这些内核。

如果这适用于您的应用程序,则可以考虑基于 4 个物理内核的 CCX 单元的 Zen 或 Zen2 微架构,在该集群内具有低延迟,但跨集群的延迟明显更差。AMD 确实有一些多核芯片,但只有 Zen2 在其加载/存储和执行单元中具有完整的 256 位 SIMD 宽度。(它仍然不支持 AVX512,但如果您的应用程序可以大量使用 SIMD,那么至少全速 AVX2+FMA 可能是您想要的)。

我如何理解性能差异?

如果我的假设是正确的,那么它是制造和销售的 CPU 的固有属性。英特尔设计了一个带有n物理内核的芯片。如果制造缺陷毁坏了其中一些核心,他们仍然可以将其作为较低核心数量的 SKU 出售。(他们烧掉了物理保险丝,因此禁用的核心不会浪费电力)。大概它的网格节点仍然必须工作,除非它们可以短路整个节点以收紧网格?

当产量高于他们想要销售的价格点的最高核心数量 SKU 的需求时,他们将禁用一些工作核心以及芯片上有缺陷的核心。但这通常是物理的,带有激光保险丝,而不仅仅是像旧 GPU 中的固件,有时你可以破解固件来激活禁用的内核。因此,您实际上无能为力。

购买启用了所有芯片上内核的芯片(例如,“Extreme”内核数 Xeon 的 28 个内核)将意味着没有融合内核。就内核间延迟的最坏情况对而言,这可能会给我们一些有趣的测试数据。

启用所有内核的较低内核数芯片也可能很有趣。https://en.wikichip.org/wiki/Category:microprocessor_models_by_intel_based_on_skylake_high_core_count_die页面显示 “高”核心数 (HCC) SKX 裸片有 14 个核心(ECC 裸片的一半)。使用该模具的顶级型号是Xeon Gold 5120,一款 14c/28t 型号。(每个内核有 1 个 512 位 FMA 单元,而不是 2 个)。 英特尔方舟证实

如果 HCC 芯片的每个内核只有 1 个 FMA 单元,我不会感到惊讶,这与 ECC 芯片不同,它包含额外的端口 5 512 位 FMA 单元。这将为英特尔销售的所有中档 SKU 节省芯片面积,并且拥有第二个 FMA 单元仅有助于 AVX512 代码。很多代码没有使用 AVX512。(AVX2 和 AVX512 256 位 FMA 吞吐量在这些 CPU 上的端口 0/端口 1 上仍然是 2/时钟。)


推荐阅读