首页 > 解决方案 > GEKKO 补料分批生物反应器的 ODE 方程组不可行系统

问题描述

我是 GEKKO 和生物反应器建模的新手,所以我可能会遗漏一些明显的东西。

我有一个描述分批补料生物反应器的 10 个 ODE 系统。给出了所有常数。下图显示了该模型的预期行为(摘自一篇论文)。然而,我发现的唯一可行的解​​决方案是当活细胞密度 (XV) = 0,并且在所有时间 t 内保持 0,或者如果时间 T 非常小(<20)。如果下边界 >= 0 或初始值设置为 XV 且 t > 20,则系统变得不可行。

多次检查方程和常数。我尝试为我的变量赋予初始值,但它也不起作用。我只能想到两个问题:我没有正确启动变量,或者我没有正确使用 GEKKO。有任何想法吗?谢谢!!

预期的模型行为

方程

import numpy as np
from gekko import GEKKO
import matplotlib.pyplot as plt

m = GEKKO(remote=False)    # create GEKKO model

#constants 3L continuous fed-batch
KdQ = 0.001        #degree of degradation of glutamine (1/h)
mG = 1.1*10**-10   #glucose maintenance coefficient (mmol/cell/hour)
YAQ = 0.90         #yield of ammonia from glutamine
YLG = 2            #yield of lactate from glucose
YXG = 2.2*10**8    #yield of cells from glucose (cells/mmol)
YXQ = 1.5*10**9    #yield of cells from glutamine (cells/mmol)
KL = 150           #lactate saturation constant (mM)
KA = 40            #ammonia saturation constant (mM)
Kdmax = 0.01       #maximum death rate (1/h)
mumax = 0.044      #maximum growth rate (1/h)
KG = 1             #glucose saturation constant (mM)
KQ = 0.22          #glutamine saturation constant (mM)
mQ = 0             #glutamine maintenance coefficient (mmol/cell/hour)
kmu = 0.01         #intrinsic death rate (1/h)
Klysis = 2*10**-2  #rate of cell lysis (1/h)
Ci_star = 100      #inhibitor saturation concentration (mM)
qi = 2.5*10**-10   #specific inhibitor production rate (1/h)

#Flow, volume and concentration
Fo = 0.001         #feed-rate (L/h)
Fi = 0.001         #feed-rate (L/h)
V = 3              #volume (L)
SG = 653           #glucose concentration in the feed (mM)
SQ = 58.8          #glutamine concentration in the feed (mM)

# create GEKKO parameter
t = np.linspace(0,120,121)
m.time = t

XT = m.Var(name='XT')            #total cell density (cells/L)
XV = m.Var(lb=0, name='XV')      #viable cell density (cells/L)
XD = m.Var(name='XD')            #dead cell density (cells/L)
G = m.Var(value = 30, name='G')  #glucose concentration (mM)
Q = m.Var(value = 4.5, name='Q') #glutamine concentration (mM)
L = m.Var(name='L')              #lactate concentration (mM)
A = m.Var(name='A')              #ammonia concentration (mM)
Ci = m.Var(name='Ci')            #inhibitor concentration (mM)
mu = m.Var(name='mu')            #growth rate (1/h)
Kd = m.Var(name='Kd')            #death rate(1/h)

# create GEEKO equations
m.Equation(XT.dt() == mu*XV - Klysis*XD - XT*Fo/V)
m.Equation(XV.dt() == (mu - Kd)*XV - XV*Fo/V)
m.Equation(XD.dt() == Kd*XV - Klysis*XD - XV*Fo/V)
m.Equation(G.dt() == (Fi/V)*SG - (Fo/V)*G + (-mu/YXG - mG)*XV)
m.Equation(Q.dt() == (Fi/V)*SQ - (Fo/V)*Q + (-mu/YXQ - mQ)*XV - KdQ*Q)
m.Equation(L.dt() == -YLG*(-mu/YXG -mG)*XV-(Fo/V)*L)
m.Equation(A.dt() == -YAQ*(-mu/YXQ - mQ)*XV +KdQ*Q-(Fo/V)*A)
m.Equation(Ci.dt() == qi*XV - (Fo/V)*Ci)
m.Equation(mu.dt() == (mumax*G*Q*(Ci_star-Ci)) / (Ci_star*(KG+G)*(KQ+Q)*(L/KL + 1)*(A/KA + 1)))
m.Equation(Kd.dt() == Kdmax*(kmu/(mu+kmu)))

# solve ODE
m.options.IMODE = 4
m.open_folder()
m.solve(display = False)

plt.plot(m.time, XV.value)

使用完全相同模型的文章:

1)硕士论文使用GEKKO“哺乳动物细胞培养建模” 链接:

https://search.proquest.com/openview/e4df2d115cbc48ec63235a64b352249c/1.pdf?pq-origsite=gscholar&cbl=18750&diss=y

2) 描述方程式的原始论文:“哺乳动物细胞生物过程的过程模型比较和跨生物反应器规模和操作模式的可转移性”

链接:https ://sci-hub.tw/10.1002/btpr.1664

3) 带有使用该模型的控制系统的论文:“使用非线性模型预测控制器对补料哺乳动物细胞生物过程进行葡萄糖浓度控制”

链接:https ://sci-hub.tw/https://doi.org/10.1016/j.jprocont.2014.02.007

标签: pythonbioinformaticsodereactorgekko

解决方案


有几个问题:

  • 最后两个方程是代数的,而不是微分的。应该mu==...不是mu.dt()==...
  • 一些方程有可能被零除。等式x.dt() = z/y可以替换为,y * x.dt()==z使得等式变为0 * x.dt() == z如果y接近零。
  • 一些初始条件未设置,因此它们使用默认值 0。这可能会创建零解决方案。

我输入了一些不同的值并用来m.options.COLDSTART=2帮助它找到初始解决方案。我还使用中间体来帮助可视化任何变大的术语。我将细胞浓度以每升百万个细胞为单位,以帮助缩放。

结果

import numpy as np
from gekko import GEKKO
import matplotlib.pyplot as plt

m = GEKKO(remote=False)    # create GEKKO model

#constants 3L continuous fed-batch
KdQ = 0.001        #degree of degradation of glutamine (1/h)
mG = 1.1e-10   #glucose maintenance coefficient (mmol/cell/hour)
YAQ = 0.90         #yield of ammonia from glutamine
YLG = 2            #yield of lactate from glucose
YXG = 2.2e8    #yield of cells from glucose (cells/mmol)
YXQ = 1.5e9    #yield of cells from glutamine (cells/mmol)
KL = 150           #lactate saturation constant (mM)
KA = 40            #ammonia saturation constant (mM)
Kdmax = 0.01       #maximum death rate (1/h)
mumax = 0.044      #maximum growth rate (1/h)
KG = 1             #glucose saturation constant (mM)
KQ = 0.22          #glutamine saturation constant (mM)
mQ = 0             #glutamine maintenance coefficient (mmol/cell/hour)
kmu = 0.01         #intrinsic death rate (1/h)
Klysis = 2e-2  #rate of cell lysis (1/h)
Ci_star = 100      #inhibitor saturation concentration (mM)
qi = 2.5e-10   #specific inhibitor production rate (1/h)

#Flow, volume and concentration
Fo = 0.001         #feed-rate (L/h)
Fi = 0.001         #feed-rate (L/h)
V = 3              #volume (L)
SG = 653           #glucose concentration in the feed (mM)
SQ = 58.8          #glutamine concentration in the feed (mM)

# create GEKKO parameter
t = np.linspace(0,50,121)
m.time = t

XTMM = m.Var(value=1,name='XT')            #total cell density (MMcells/L)
XVMM = m.Var(value=1,lb=0, name='XV')      #viable cell density (MMcells/L)
XDMM = m.Var(value=1.0,name='XD')          #dead cell density (MMcells/L)
G = m.Var(value = 20, name='G')            #glucose concentration (mM)
Q = m.Var(value = 4.5, name='Q')           #glutamine concentration (mM)
L = m.Var(value=1,name='L')                #lactate concentration (mM)
A = m.Var(value=1.6,name='A')              #ammonia concentration (mM)
Ci = m.Var(value=0.1,name='Ci')            #inhibitor concentration (mM)
mu = m.Var(value=0.1,name='mu')            #growth rate (1/h)
Kd = m.Var(value=0.5,name='Kd')            #death rate(1/h)

# scale back to cells/L from million cells/L
XT = m.Intermediate(XTMM*1e7)
XV = m.Intermediate(XVMM*1e7)
XD = m.Intermediate(XDMM*1e7)

e1 = m.Intermediate((mu*XV - Klysis*XD - XT*Fo/V)/1e7)
e2 = m.Intermediate(((mu - Kd)*XV - XV*Fo/V)/1e7)
e3 = m.Intermediate((Kd*XV - Klysis*XD - XV*Fo/V)/1e7)
e4 = m.Intermediate((Fi/V)*SG - (Fo/V)*G + (-mu/YXG - mG)*XV)
e5 = m.Intermediate((Fi/V)*SQ - (Fo/V)*Q + (-mu/YXQ - mQ)*XV - KdQ*Q)
e6 = m.Intermediate(-YLG*(-mu/YXG -mG)*XV-(Fo/V)*L)
e7 = m.Intermediate(-YAQ*(-mu/YXQ - mQ)*XV +KdQ*Q-(Fo/V)*A)
e8 = m.Intermediate(qi*XV - (Fo/V)*Ci)
e9a = m.Intermediate((Ci_star*(KG+G)*(KQ+Q)*(L/KL + 1)*(A/KA + 1)))
e9b = m.Intermediate((mumax*G*Q*(Ci_star-Ci)))
e10a = m.Intermediate((mu+kmu))
e10b = m.Intermediate(Kdmax*kmu)

# create GEEKO equations
m.Equation(XTMM.dt() == e1)
m.Equation(XVMM.dt() == e2)
m.Equation(XDMM.dt() == e3)
m.Equation(G.dt() == e4)
m.Equation(Q.dt() == e5)
m.Equation(L.dt() == e6)
m.Equation(A.dt() == e7)
m.Equation(Ci.dt() == e8)
m.Equation(e9a * mu == e9b)
m.Equation(e10a*Kd == e10b)

# solve ODE
m.options.IMODE = 4
m.options.SOLVER = 1
m.options.NODES = 3
m.options.COLDSTART = 2
#m.open_folder()
m.solve(display=False)

plt.figure()
plt.subplot(3,1,1)
plt.plot(m.time, XV.value,label='XV')
plt.plot(m.time, XT.value,label='XT')
plt.plot(m.time, XD.value,label='XD')
plt.legend()
plt.subplot(3,1,2)
plt.plot(m.time, G.value,label='G')
plt.plot(m.time, Q.value,label='Q')
plt.plot(m.time, L.value,label='L')
plt.plot(m.time, A.value,label='A')
plt.legend()
plt.subplot(3,1,3)
plt.plot(m.time, mu.value,label='mu')
plt.plot(m.time, Kd.value,label='Kd')
plt.legend()
plt.xlabel('Time (hr)')

plt.figure()
plt.plot(m.time, e1.value,'r-.',label='eqn1')
plt.plot(m.time, e2.value,'g:',label='eqn2')
plt.plot(m.time, e3.value,'b:',label='eqn3')
plt.plot(m.time, e4.value,'b--',label='eqn4')
plt.plot(m.time, e5.value,'y:',label='eqn5')
plt.plot(m.time, e6.value,'m--',label='eqn6')
plt.plot(m.time, e7.value,'b-.',label='eqn7')
plt.plot(m.time, e8.value,'g--',label='eqn8')
plt.plot(m.time, e9a.value,'r:',label='eqn9a')
plt.plot(m.time, e9b.value,'r--',label='eqn9b')
plt.plot(m.time, e10a.value,'k:',label='eqn10a')
plt.plot(m.time, e10b.value,'k--',label='eqn10b')
plt.legend()

plt.show()

推荐阅读