首页 > 解决方案 > 如何提高推力排序的计算时间?

问题描述

我在下面的链接中找到了“矢量化/批量排序”和“嵌套排序”方法。 如何使用 Thrust 对矩阵的行进行排序?

当我对 500 行和 1000 个元素尝试此方法时,它们的结果是

  1. 矢量化/批量排序:66ms
  2. 嵌套排序:3290ms

我正在使用 1080ti HOF 模型来执行此操作,但与您的情况相比,它需要的时间太长。
但在下面的链接中,它可能不到 10 毫秒,几乎 100 微秒。
如何使用 CUDA 在二维数组中找到每列的中值?

您能否推荐如何优化此方法以减少操作时间?

#include <thrust/device_vector.h>
#include <thrust/device_ptr.h>
#include <thrust/host_vector.h>
#include <thrust/sort.h>
#include <thrust/execution_policy.h>
#include <thrust/generate.h>
#include <thrust/equal.h>
#include <thrust/sequence.h>
#include <thrust/for_each.h>
#include <iostream>
#include <stdlib.h>

#define NSORTS 500
#define DSIZE 1000

int my_mod_start = 0;
int my_mod() {
    return (my_mod_start++) / DSIZE;
}

bool validate(thrust::device_vector<int> &d1, thrust::device_vector<int> &d2) {
    return thrust::equal(d1.begin(), d1.end(), d2.begin());
}


struct sort_functor
{
    thrust::device_ptr<int> data;
    int dsize;
    __host__ __device__
        void operator()(int start_idx)
    {
        thrust::sort(thrust::device, data + (dsize*start_idx), data + (dsize*(start_idx + 1)));
    }
};

#include <time.h>
#include <windows.h>

unsigned long long dtime_usec(LONG start) {

    SYSTEMTIME timer2;
    GetSystemTime(&timer2);
    LONG end = (timer2.wSecond * 1000) + timer2.wMilliseconds;

    return (end-start);
}

int main() {
    for (int i = 0; i < 3; i++) {
        SYSTEMTIME timer1;
        cudaDeviceSetLimit(cudaLimitMallocHeapSize, (16 * DSIZE*NSORTS));
        thrust::host_vector<int> h_data(DSIZE*NSORTS);
        thrust::generate(h_data.begin(), h_data.end(), rand);
        thrust::device_vector<int> d_data = h_data;

        // first time a loop
        thrust::device_vector<int> d_result1 = d_data;
        thrust::device_ptr<int> r1ptr = thrust::device_pointer_cast<int>(d_result1.data());
        GetSystemTime(&timer1);
        LONG time_ms1 = (timer1.wSecond * 1000) + timer1.wMilliseconds;
        for (int i = 0; i < NSORTS; i++)
            thrust::sort(r1ptr + (i*DSIZE), r1ptr + ((i + 1)*DSIZE));
        cudaDeviceSynchronize();
        time_ms1 = dtime_usec(time_ms1);
        std::cout << "loop time: " << time_ms1 << "ms" << std::endl;

        //vectorized sort
        thrust::device_vector<int> d_result2 = d_data;
        thrust::host_vector<int> h_segments(DSIZE*NSORTS);
        thrust::generate(h_segments.begin(), h_segments.end(), my_mod);
        thrust::device_vector<int> d_segments = h_segments;
        GetSystemTime(&timer1);
        time_ms1 = (timer1.wSecond * 1000) + timer1.wMilliseconds;
        thrust::stable_sort_by_key(d_result2.begin(), d_result2.end(), d_segments.begin());
        thrust::stable_sort_by_key(d_segments.begin(), d_segments.end(), d_result2.begin());
        cudaDeviceSynchronize();
        time_ms1 = dtime_usec(time_ms1);
        std::cout << "loop time: " << time_ms1 << "ms" << std::endl;
        if (!validate(d_result1, d_result2)) std::cout << "mismatch 1!" << std::endl;

        //nested sort
        thrust::device_vector<int> d_result3 = d_data;
        sort_functor f = { d_result3.data(), DSIZE };
        thrust::device_vector<int> idxs(NSORTS);
        thrust::sequence(idxs.begin(), idxs.end());
        GetSystemTime(&timer1);
        time_ms1 = (timer1.wSecond * 1000) + timer1.wMilliseconds;
        thrust::for_each(idxs.begin(), idxs.end(), f);
        cudaDeviceSynchronize();
        time_ms1 = dtime_usec(time_ms1);
        std::cout << "loop time: " << time_ms1 << "ms" << std::endl;
        if (!validate(d_result1, d_result3)) std::cout << "mismatch 2!" << std::endl;

    }
    return 0;
}

标签: sortingcudathrust

解决方案


-G从您的推力体验中获得的主要收获是,当您对性能感兴趣时,您永远不应该编译调试项目或使用设备调试开关 ( )。编译设备调试代码会导致编译器忽略许多性能优化。您的案例中的差异非常显着,从调试到发布代码大约提高了 30 倍。

这是一个分段的幼崽排序,我们将启动 500 个块,每个块处理一个单独的 1024 元素数组。CUB 代码是从这里提取的。

$ cat t1761.cu
#include <cub/cub.cuh>   // or equivalently <cub/block/block_radix_sort.cuh>
#include <iostream>
const int ipt=8;
const int tpb=128;
__global__ void ExampleKernel(int *data)
{
    // Specialize BlockRadixSort for a 1D block of 128 threads owning 8 integer items each
    typedef cub::BlockRadixSort<int, tpb, ipt> BlockRadixSort;
    // Allocate shared memory for BlockRadixSort
    __shared__ typename BlockRadixSort::TempStorage temp_storage;
    // Obtain a segment of consecutive items that are blocked across threads
    int thread_keys[ipt];
    // just create some synthetic data in descending order 1023 1022 1021 1020 ...
    for (int i = 0; i < ipt; i++) thread_keys[i] = (tpb-1-threadIdx.x)*ipt+i;
    // Collectively sort the keys
    BlockRadixSort(temp_storage).Sort(thread_keys);
    __syncthreads();
    // write results to output array
    for (int i = 0; i < ipt; i++) data[blockIdx.x*ipt*tpb + threadIdx.x*ipt+i] = thread_keys[i];
}


int main(){

    const int blks = 500;
    int *data;
    cudaMalloc(&data, blks*ipt*tpb*sizeof(int));
    ExampleKernel<<<blks,tpb>>>(data);
    int *h_data = new int[blks*ipt*tpb];
    cudaMemcpy(h_data, data, blks*ipt*tpb*sizeof(int), cudaMemcpyDeviceToHost);
    for (int i = 0; i < 10; i++) std::cout << h_data[i] << " ";
    std::cout << std::endl;
}

$ nvcc -o t1761 t1761.cu -I/path/to/cub/cub-1.8.0
$ CUDA_VISIBLE_DEVICES="2" nvprof ./t1761
==13713== NVPROF is profiling process 13713, command: ./t1761
==13713== Warning: Profiling results might be incorrect with current version of nvcc compiler used to compile cuda app. Compile with nvcc compiler 9.0 or later version to get correct profiling results. Ignore this warning if code is already compiled with the recommended nvcc version
0 1 2 3 4 5 6 7 8 9
==13713== Profiling application: ./t1761
==13713== Profiling result:
            Type  Time(%)      Time     Calls       Avg       Min       Max  Name
 GPU activities:   60.35%  308.66us         1  308.66us  308.66us  308.66us  [CUDA memcpy DtoH]
                   39.65%  202.79us         1  202.79us  202.79us  202.79us  ExampleKernel(int*)
      API calls:   98.39%  210.79ms         1  210.79ms  210.79ms  210.79ms  cudaMalloc
                    0.72%  1.5364ms         1  1.5364ms  1.5364ms  1.5364ms  cudaMemcpy
                    0.32%  691.15us         1  691.15us  691.15us  691.15us  cudaLaunchKernel
                    0.28%  603.26us        97  6.2190us     400ns  212.71us  cuDeviceGetAttribute
                    0.24%  516.56us         1  516.56us  516.56us  516.56us  cuDeviceTotalMem
                    0.04%  79.374us         1  79.374us  79.374us  79.374us  cuDeviceGetName
                    0.01%  13.373us         1  13.373us  13.373us  13.373us  cuDeviceGetPCIBusId
                    0.00%  5.0810us         3  1.6930us     729ns  2.9600us  cuDeviceGetCount
                    0.00%  2.3120us         2  1.1560us     609ns  1.7030us  cuDeviceGet
                    0.00%     748ns         1     748ns     748ns     748ns  cuDeviceGetUuid
$

(CUDA 10.2.89,RHEL 7)

上面我在 Tesla K20x 上运行,它的性能比 Tesla V100 更接近 1080ti。我们看到内核执行时间约为 200us。如果我在 Tesla V100 上运行完全相同的代码,内核执行时间会下降到 ~35us:

$ CUDA_VISIBLE_DEVICES="0" nvprof ./t1761
==13814== NVPROF is profiling process 13814, command: ./t1761
0 1 2 3 4 5 6 7 8 9
==13814== Profiling application: ./t1761
==13814== Profiling result:
            Type  Time(%)      Time     Calls       Avg       Min       Max  Name
 GPU activities:   82.33%  163.43us         1  163.43us  163.43us  163.43us  [CUDA memcpy DtoH]
                   17.67%  35.073us         1  35.073us  35.073us  35.073us  ExampleKernel(int*)
      API calls:   98.70%  316.92ms         1  316.92ms  316.92ms  316.92ms  cudaMalloc
                    0.87%  2.7879ms         1  2.7879ms  2.7879ms  2.7879ms  cuDeviceTotalMem
                    0.19%  613.75us        97  6.3270us     389ns  205.37us  cuDeviceGetAttribute
                    0.19%  601.61us         1  601.61us  601.61us  601.61us  cudaMemcpy
                    0.02%  72.718us         1  72.718us  72.718us  72.718us  cudaLaunchKernel
                    0.02%  59.905us         1  59.905us  59.905us  59.905us  cuDeviceGetName
                    0.01%  37.886us         1  37.886us  37.886us  37.886us  cuDeviceGetPCIBusId
                    0.00%  4.6830us         3  1.5610us     546ns  2.7850us  cuDeviceGetCount
                    0.00%  1.9900us         2     995ns     587ns  1.4030us  cuDeviceGet
                    0.00%     677ns         1     677ns     677ns     677ns  cuDeviceGetUuid
$

您会注意到没有“输入”数组,我只是在内核中合成数据,因为我们主要对性能感兴趣。如果您需要处理像 1000 这样的数组大小,您可能应该将每个数组填充到 1024(例如,填充一个非常大的数字,然后忽略排序结果中的最后一个数字。)

此代码主要来自外部文档。它是为教学目的而提供的。我并不是说它没有缺陷或适用于任何特定目的。需要您自担风险使用它。


推荐阅读