首页 > 解决方案 > sklearn StackingClassifier 和样本权重

问题描述

我有一个类似于的堆叠工作流程

import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import StackingClassifier
from sklearn.pipeline import make_pipeline
import xgboost as xgb

X = np.random.random(size=(1000, 5))
y = np.random.choice([0,1], 1000)
w = np.random.random(size=(1000,))

scaler = StandardScaler()
log_reg = LogisticRegression()

params = {
    'n_estimators': 10,
    'max_depth': 3,
    'learning_rate': 0.1
}

log_reg_pipe = make_pipeline(
    scaler,
    log_reg
)

stack_pipe = make_pipeline(
    StackingClassifier(
        estimators=[('lr', lr_stack_pipe)],
        final_estimator=xgb.XGBClassifier(**params),
        passthrough=True,
        cv=2
    )
)

我希望能够将样本权重传递给 xgboost。我的问题是如何在最终估计器中设置样本权重?

我努力了

stack_pipe.fit(X, y, sample_weights=w)抛出

ValueError: Pipeline.fit does not accept the sample_weights parameter. You can pass parameters to specific steps of your pipeline using the stepname__parameter format, e.g. `Pipeline.fit(X, y, logisticregression__sample_weight=sample_weight)`

标签: pythonmachine-learningscikit-learnxgboost

解决方案


我最近还意识到堆叠估计器无法处理样本加权管道。我通过子类化 scikit-learn 中的StackingRegressorStackingClassifier类并覆盖它的fit()方法来更好地管理管道来解决这个问题。看看以下内容:

"""Implement StackingClassifier that can handle sample-weighted Pipelines."""

from sklearn.ensemble import StackingRegressor, StackingClassifier
from copy import deepcopy

import numpy as np
from joblib import Parallel

from sklearn.base import clone
from sklearn.base import is_classifier, is_regressor

from sklearn.model_selection import cross_val_predict
from sklearn.model_selection import check_cv

from sklearn.utils import Bunch
from sklearn.utils.fixes import delayed

from sklearn.pipeline import Pipeline

ESTIMATOR_NAME_IN_PIPELINE = 'estimator'

def new_fit_single_estimator(estimator, X, y, sample_weight=None,
                             message_clsname=None, message=None):
    """Private function used to fit an estimator within a job."""
    if sample_weight is not None:
        try:
            if isinstance(estimator, Pipeline):
                # determine name of final estimator
                estimator_name = estimator.steps[-1][0]
                kwargs = {estimator_name + '__sample_weight': sample_weight}
                estimator.fit(X, y, **kwargs)
            else:
                estimator.fit(X, y, sample_weight=sample_weight)
        except TypeError as exc:
            if "unexpected keyword argument 'sample_weight'" in str(exc):
                raise TypeError(
                    "Underlying estimator {} does not support sample weights."
                    .format(estimator.__class__.__name__)
                ) from exc
            raise
    else:
        estimator.fit(X, y)
    return estimator


class FlexibleStackingClassifier(StackingClassifier):

    def __init__(self, estimators, final_estimator=None, *, cv=None,
                 n_jobs=None, passthrough=False, verbose=0):
        super().__init__(
            estimators=estimators,
            final_estimator=final_estimator,
            cv=cv,
            n_jobs=n_jobs,
            passthrough=passthrough,
            verbose=verbose
        )

    def fit(self, X, y, sample_weight=None):
        """Fit the estimators.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training vectors, where `n_samples` is the number of samples and
            `n_features` is the number of features.
        y : array-like of shape (n_samples,)
            Target values.
        sample_weight : array-like of shape (n_samples,) or default=None
            Sample weights. If None, then samples are equally weighted.
            Note that this is supported only if all underlying estimators
            support sample weights.
            .. versionchanged:: 0.23
               when not None, `sample_weight` is passed to all underlying
               estimators

        Returns
        -------
        self : object
        """
        # all_estimators contains all estimators, the one to be fitted and the
        # 'drop' string.
        names, all_estimators = self._validate_estimators()
        self._validate_final_estimator()

        stack_method = [self.stack_method] * len(all_estimators)

        # Fit the base estimators on the whole training data. Those
        # base estimators will be used in transform, predict, and
        # predict_proba. They are exposed publicly.
        self.estimators_ = Parallel(n_jobs=self.n_jobs)(
            delayed(new_fit_single_estimator)(clone(est), X, y, sample_weight)
            for est in all_estimators if est != 'drop'
        )

        self.named_estimators_ = Bunch()
        est_fitted_idx = 0
        for name_est, org_est in zip(names, all_estimators):
            if org_est != 'drop':
                self.named_estimators_[name_est] = self.estimators_[
                    est_fitted_idx]
                est_fitted_idx += 1
            else:
                self.named_estimators_[name_est] = 'drop'

        # To train the meta-classifier using the most data as possible, we use
        # a cross-validation to obtain the output of the stacked estimators.

        # To ensure that the data provided to each estimator are the same, we
        # need to set the random state of the cv if there is one and we need to
        # take a copy.
        cv = check_cv(self.cv, y=y, classifier=is_classifier(self))
        if hasattr(cv, 'random_state') and cv.random_state is None:
            cv.random_state = np.random.RandomState()

        self.stack_method_ = [
            self._method_name(name, est, meth)
            for name, est, meth in zip(names, all_estimators, stack_method)
        ]
        fit_params = ({f"{ESTIMATOR_NAME_IN_PIPELINE}__sample_weight": sample_weight}
                      if sample_weight is not None
                      else None)
        predictions = Parallel(n_jobs=self.n_jobs)(
            delayed(cross_val_predict)(clone(est), X, y, cv=deepcopy(cv),
                                       method=meth, n_jobs=self.n_jobs,
                                       fit_params=fit_params,
                                       verbose=self.verbose)
            for est, meth in zip(all_estimators, self.stack_method_)
            if est != 'drop'
        )

        # Only not None or not 'drop' estimators will be used in transform.
        # Remove the None from the method as well.
        self.stack_method_ = [
            meth for (meth, est) in zip(self.stack_method_, all_estimators)
            if est != 'drop'
        ]

        X_meta = self._concatenate_predictions(X, predictions)
        new_fit_single_estimator(self.final_estimator_, X_meta, y,
                                 sample_weight=sample_weight)

        return self


class FlexibleStackingRegressor(StackingRegressor):

    def __init__(self, estimators, final_estimator=None, *, cv=None,
                 n_jobs=None, passthrough=False, verbose=0):
        super().__init__(
            estimators=estimators,
            final_estimator=final_estimator,
            cv=cv,
            n_jobs=n_jobs,
            passthrough=passthrough,
            verbose=verbose
        )

    def fit(self, X, y, sample_weight=None):
        """Fit the estimators.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training vectors, where `n_samples` is the number of samples and
            `n_features` is the number of features.
        y : array-like of shape (n_samples,)
            Target values.
        sample_weight : array-like of shape (n_samples,) or default=None
            Sample weights. If None, then samples are equally weighted.
            Note that this is supported only if all underlying estimators
            support sample weights.
            .. versionchanged:: 0.23
               when not None, `sample_weight` is passed to all underlying
               estimators

        Returns
        -------
        self : object
        """
        # all_estimators contains all estimators, the one to be fitted and the
        # 'drop' string.
        names, all_estimators = self._validate_estimators()
        self._validate_final_estimator()

        stack_method = [self.stack_method] * len(all_estimators)

        # Fit the base estimators on the whole training data. Those
        # base estimators will be used in transform, predict, and
        # predict_proba. They are exposed publicly.
        self.estimators_ = Parallel(n_jobs=self.n_jobs)(
            delayed(new_fit_single_estimator)(clone(est), X, y, sample_weight)
            for est in all_estimators if est != 'drop'
        )

        self.named_estimators_ = Bunch()
        est_fitted_idx = 0
        for name_est, org_est in zip(names, all_estimators):
            if org_est != 'drop':
                self.named_estimators_[name_est] = self.estimators_[
                    est_fitted_idx]
                est_fitted_idx += 1
            else:
                self.named_estimators_[name_est] = 'drop'

        # To train the meta-classifier using the most data as possible, we use
        # a cross-validation to obtain the output of the stacked estimators.

        # To ensure that the data provided to each estimator are the same, we
        # need to set the random state of the cv if there is one and we need to
        # take a copy.
        cv = check_cv(self.cv, y=y, classifier=is_classifier(self))
        if hasattr(cv, 'random_state') and cv.random_state is None:
            cv.random_state = np.random.RandomState()

        self.stack_method_ = [
            self._method_name(name, est, meth)
            for name, est, meth in zip(names, all_estimators, stack_method)
        ]
        fit_params = ({f"{ESTIMATOR_NAME_IN_PIPELINE}__sample_weight": sample_weight}
                      if sample_weight is not None
                      else None)
        predictions = Parallel(n_jobs=self.n_jobs)(
            delayed(cross_val_predict)(clone(est), X, y, cv=deepcopy(cv),
                                       method=meth, n_jobs=self.n_jobs,
                                       fit_params=fit_params,
                                       verbose=self.verbose)
            for est, meth in zip(all_estimators, self.stack_method_)
            if est != 'drop'
        )

        # Only not None or not 'drop' estimators will be used in transform.
        # Remove the None from the method as well.
        self.stack_method_ = [
            meth for (meth, est) in zip(self.stack_method_, all_estimators)
            if est != 'drop'
        ]

        X_meta = self._concatenate_predictions(X, predictions)
        new_fit_single_estimator(self.final_estimator_, X_meta, y,
                                 sample_weight=sample_weight)

        return self

我包含了 Regressor 和 Classifier 版本,尽管您似乎只需要能够使用 Classifier 子类。

但请注意:您必须在管道中为估算器指定相同的名称,并且该名称必须与ESTIMATOR_NAME_IN_PIPELINE下面定义的字段一致。否则代码将无法工作。例如,这将是一个适当定义Pipeline的实例,它使用与上面显示的类定义脚本中定义的名称相同的名称:

from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import TweedieRegressor
from sklearn.feature_selection import VarianceThreshold

validly_named_pipeline = Pipeline([
    ('variance_threshold', VarianceThreshold()),
    ('scaler', StandardScaler()),
    ('estimator', TweedieRegressor())
])

这并不理想,但这是我现在所拥有的,无论如何都应该工作。

编辑:为了清楚起见,当我覆盖该fit()方法时,我只是从 scikit 存储库中复制并粘贴了代码并进行了必要的更改,这仅构成几行。这么多粘贴的代码不是我的原创作品,而是 scikit 开发者的作品。


推荐阅读